Skip to main content
Log in

Role of luteal cell nucleus in the expression of gonadotropin action

  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Gonadotropin receptors are not only present in cell membranes, but also in nuclei of bovine and human luteal cells. hCG/hLH can directly regulate several nuclear functions. To further investigate the role of luteal cell nucleus in the expression of gonadotropin action, the effect of enucleation of luteal cells on gonadotropin receptors and gonadotropin response was studied. Luteal cytoplasts were prepared by colchicine treatment of purified whole luteal cells followed by centrifugation at 37 C in a Percoll gradient. The cytoplasts were 85 to 90% pure with a recovery of about 57%. Cytoplasts were viable as determined by trypan blue exclusion (87%) and metabolically competent as determined by 3H-leucine incorporation into proteins. On the day of preparation, the viability and metabolic competency of cytoplasts were similar to control cells, i.e. untreated and colchicine treated whole luteal cells. In addition, cytoplasts and control cells showed a similar decline in number and viability during storage at 4 C. While control cells continue to be metabolically competent, cytoplasts showed a dramatic decline by 48 h of storage at 4 C. Neither the cytoplasts nor control cells degraded 1251-hCG. The kinetics of 1251-hCG association and dissociation, specificity and affinity of binding to cytoplasts were similar to control cells. However, the number of available gonadotropin receptors in cytoplasts was significantly lower than in control cells. Cytoplasts contained lower progesterone levels and more importantly, they could not be stimulated by 10 nM hCG or 10 mM dibutyry1 cyclic AMP to produce more progesterone. Controls cells, on the other hand, contained higher progesterone levels and responded to hCG and dibutyryl cyclic AMP stimulation. In summary, removal of nuclei from luteal cells results in a partial loss of gonadotropin receptors and complete loss of steroidogenic response to hCG and dibutyryl cyclic AMP. Whether the loss of steroidogenic response was related or coincidental to partial gonadotropin receptors loss is unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carter S.B. The effect of cytochalasins in mammalian cells. Nature 213: 261, 1967.

    Article  CAS  PubMed  Google Scholar 

  2. Prescott D.M., Kirkpatrick J.B. Mass enucleation of cultured animal cells. In: Prescott D.M. (Ed.), Methods in Cell Biology. Academic Press, New York, 1973, vol. VII, p. 189.

    Google Scholar 

  3. Mori Y., Akedo H., Matsuhisa T., Tanigaki Y., Okada M. Extrusion of nuclei of murine suspension cultured cells with microtubule poisons. Exp. Cell Res. 153: 574, 1984.

    Article  CAS  PubMed  Google Scholar 

  4. Prescott D.M., Myerson D., Wallace J. Enucleation of mammalian cells with cytochalasin B. Exp. Cell. Res. 71: 480, 1971.

    Article  Google Scholar 

  5. Follett E.A.C. A convenient method for enucleating cells in quantity. Exp. Cell. Res. 84: 72, 1974.

    Article  CAS  PubMed  Google Scholar 

  6. Bossart W., Loeffler H., Bienz H. Enucleation of cells by density gradient centrifugation. Exp. Cell. Res. 96: 360, 1975.

    Article  CAS  PubMed  Google Scholar 

  7. Wigler M.H., Weinstein I.B. A preparative method for obtaining enucleated mammalian cells. Biochem. Biophys. Res. Commun. 63: 669, 1975.

    Article  CAS  PubMed  Google Scholar 

  8. Degaetano D., Schindler M. Enucleation of normal and transformed cells. J. Cell. Physiol. 130: 301, 1987.

    Article  CAS  PubMed  Google Scholar 

  9. Colonna A., Kerr S.J. The nucleus as the site of tRNA methylation. J. Cell. Physiol. 103: 29, 1980.

    Article  CAS  PubMed  Google Scholar 

  10. Goldman R.D., Pollack R., Hopkins N.J. Preservation of normal behavior by enucleated cells in culture. Proc. Natl. Acad. Sci. U.S.A. 70: 750, 1973.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Goldstein L.R., Cailleau R., Crocker J. Nuclear-cytoplasmic relationships in human cells in tissue culture. The microscopic behavior of enucleate human cell fragments. Exp. Cell. Res. 19: 332, 1960.

    Article  CAS  PubMed  Google Scholar 

  12. Welshons W.V., Lieberman M.E., Gorski J. Nuclear localization of unoccupied oestrogen receptors. Nature 307: 747, 1984.

    Article  CAS  PubMed  Google Scholar 

  13. Welshons W.V., Krummel B.M., Gorski J. Nuclear localization of unoccupied receptors for glucocorticoids, estrogens and progesterone in GH3 cells. Endocrinology 117: 2140, 1985.

    Article  CAS  PubMed  Google Scholar 

  14. Gravanis A., Gurpide E. Enucleation of human endometrial cells: nucleo-cytoplasmic distribution of DNA polymerase and estrogen receptor. J. Steroid. Biochem. 24: 469, 1986.

    Article  CAS  PubMed  Google Scholar 

  15. Gudas J.M., Karenlampi S.O., Hankinson O. Intracellular location of the Ah receptor. J. Cell. Physiol. 128: 441, 1986.

    Article  CAS  PubMed  Google Scholar 

  16. Walters S.N., Reinhardt T.A., Dominick M.A., Horst R.L., Littledike E.T. Intracellular location of unoccupied 1,25-dihydroxy-vitamin D receptors: a nuclear-cytoplasmic equilibrium. Arch. Biochem. Biophys. 246: 366, 1986.

    Article  CAS  PubMed  Google Scholar 

  17. LaFond R.E., Kennedy S.W., Harrison R.W., Villee C.A. Immunocytochemical localization of glucocorticoid receptors in cells, cytoplasts, and nucleoplasts. Exp. Cell. Res. 175: 52, 1988.

    Article  CAS  PubMed  Google Scholar 

  18. McDonald R.A., Gelehrter T.D. Glucocorticoid regulation of amino acid transport in anucleate rat hepatoma (HTC) cells. J. Cell. Biol. 88/536, 1981.

    Article  CAS  PubMed  Google Scholar 

  19. Smith J.C., Stiles C.D. Cytoplasmic transfer of the mitogenic response of platelet-derived growth factor. Proc. Natl. Acad. Sci. U.S.A. 78: 4363, 1981.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Crettaz M., Kahn C.R., Fehlmann M. Glucagon regulation of amino acid transport in hepatocytes: effect of cell enuncleation. J. Cell. Physiol. 115: 186, 1983.

    Article  CAS  PubMed  Google Scholar 

  21. Brown M., Bollum F.J., Chang L.M.S. Intracellular localization of DNA polymerase. Proc. Natl. Acad. Sci. U.S.A. 78: 3049, 1981.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Poddar S.K., Bauer W.R. Type I topoisomerase activity after infection of enucleated synchronized mouse L cells by vaccinia virus. J. Virol. 57: 433, 1986.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Caron J.M., Jones A.L., Rail L.B., Kirschner M.W. Autoregulation of tubulin synthesis in enucleated cells. Nature 817: 648, 1985.

    Article  Google Scholar 

  24. Pittenger M.F., Cleveland D.W. Retention of autoregulatory control of tubulin synthesis in cytoplasts: demonstration of a cytoplasmic mechanism that regulates the level of tubulin expression. J. Cell. Biol. 101: 1941, 1985.

    Article  CAS  PubMed  Google Scholar 

  25. Volloch V., Schweitzer B., Rits S. Synthesis of globin RNA in enucleated differentiating murine erythroleukemia cells. J. Cell. Biol. 105: 137, 1987.

    Article  CAS  PubMed  Google Scholar 

  26. Zieve G.W., Sauterer R.A., Feeney R.J. Newly synthesized small nuclear RNAs appear transiently in the cytoplasm. J. Mol. Biol. 199: 259, 1988.

    Article  CAS  PubMed  Google Scholar 

  27. Rao Ch. V., Mitra S. Gonadotropin and prostaglandins binding sites in nuclei of bovine corpora lutea. Biochim. Biophys. Acta 584: 454, 1979.

    Article  CAS  PubMed  Google Scholar 

  28. Rao Ch. V., Mitra S., Carman F.R. Jr. Characterization of gonadotropin binding sites in the intracellular organelles of bovine corpora lutea and comparison with plasma membrane sites. J. Biol. Chem. 256: 2628, 1981.

    CAS  PubMed  Google Scholar 

  29. Rao Ch. V., Mitra S., Sanfillippo J., Carman F.R. Jr. The presence of gonadotropin binding sites in the intracellular organelles of human ovaries. Am. J. Obstet. Gynecol. 139: 655, 1981.

    CAS  PubMed  Google Scholar 

  30. Rao Ch. V., Fields M.J., Chen T., Abel J.H. Jr., Edgerton L.A. Change in gonadotropin binding sites in intracellular organelles and plasma membranes during luteal growth, development and regression. Exp. Cell. Res. 144: 285, 1983.

    Article  CAS  PubMed  Google Scholar 

  31. Ramani N., Rao Ch. V. Direct stimulation of nucleoside triphosphatase activity in bovine luteal nuclear membranes by human chorionic gonadotropin. Endocrinology 120: 2468, 1987.

    Article  CAS  PubMed  Google Scholar 

  32. Toledo A., Ramani N., Rao Ch. V. Direct stimulation of nucleoside triphosphatase activity in human ovarian nuclear membranes by human chorionic gonadotropin. J. Clin. Endocrinol. Metab. 65: 305, 1987.

    Article  CAS  PubMed  Google Scholar 

  33. Oechsli M., Rao Ch. V., Chegini N. Human chorionic gonadotropin increases chromatin solubility in isolated bovine and human luteal nuclei. Biol. Reprod. 41: 753, 1989.

    Article  CAS  PubMed  Google Scholar 

  34. Ireland J.J., Murphee R.L., Coulson P.B. Accuracy of predicting stages of bovine estrous cycle by gross appearance of the corpus luteum. J. Dairy Sci. 63: 155, 1980.

    Article  CAS  PubMed  Google Scholar 

  35. McNamara B.C., Cranna C.E.G., Booth R., Stansfield D.A. The preparation and purification of isolated rat corpus-luteum cells and their use in studying the relationship between cholesterol biosynthesis and the lutropin-stimulated formation of progesterone. Biochem. J. 192: 559, 1980.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Clark G. Staining Procedures, ed. 4 Williams & Wilkins, Baltimore, 1981.

    Google Scholar 

  37. Paul J. Cell & Tissue Culture, ed. 5 Churchill Livingstone, Edinburgh, 1975.

    Google Scholar 

  38. Tsafriri A., Lieberman M.E., Barnea A., Bauminger S., Lindner H.R. Induction by luteinizing hormone of ovum maturation and of steroidogenesis in isolated Graafian follicles of the rat; role of RNA and protein synthesis. Endocrinology 93: 1378, 1973.

    Article  CAS  PubMed  Google Scholar 

  39. Miyachi Y., Vaitukaitis J.L., Neischlag E., Lipsett M.B. Enzymatic radioiodination of gonadotropins. J. Clin. Endocrinol. Metab. 34: 23, 1972.

    Article  CAS  PubMed  Google Scholar 

  40. Rao Ch. V., Griffin L.P., Carman F.R. Jr. Gonadotropin receptors in human corpora lutea of the menstrual cycle and pregnancy. Am. J. Obstet. Gynecol. 128: 146, 1977.

    CAS  PubMed  Google Scholar 

  41. Steel R.G., Torrie J.H. Principles and Procedures of Statistics. McGraw-Hill, New York, 1960.

    Google Scholar 

  42. Chegini N., Ramani N., Rao Ch. V. Morphological and biochemical characterization of small and large bovine luteal cells during pregnancy. Mol. Cell. Endocrinol. 37: 89, 1984.

    Article  CAS  PubMed  Google Scholar 

  43. Chegini N., Rao Ch. V., Carman F.R. Jr. Internalization of 1251-human choriogonadotropin in bovine luteal slices. A biochemical study. Exp. Cell. Res. 151: 466, 1984.

    Article  CAS  PubMed  Google Scholar 

  44. Chegini N., Rao Ch. V., Cobbs G. A quantitative electron microscope autoradiographic study on 1251-human choriogonadotropin internalization in bovine luteal slices. Exp. Cell. Res. 151: 483, 1984.

    Article  CAS  PubMed  Google Scholar 

  45. Paine P.L., Austerberry C.F., Desjarlais L.J., Horowitz S.B. Protein loss during nuclear isolation. J. Cell. Biol. 97: 1240, 1983.

    Article  CAS  PubMed  Google Scholar 

  46. Reshef E., Lei Z.M., Rao Ch. V., Pridham D.D., Chegini N., Luborsky J.L. The presence of gonadotropin receptors in non pregnant human uterus, human placenta, fetal membranes and decidua. J. Clin. Endocrinol. Metab. 70: 421, 1990.

    Article  CAS  PubMed  Google Scholar 

  47. Lei Z.M., Chakraborty C., Rao Ch. V., Mitchell D.E. Light and electron microscope immunocytochemical studies on hCG/LH receptors in human and bovine corpora lutea: cellular localization, cycle dependence and subcellular distribution. 72nd Annual Meeting of the Endocrine Society Atlanta, June 20–23, 1990, Abstract no 466.

  48. Mitra S., Rao Ch. V. Gonadotropin and prostaglandins binding sites in rough endoplasmic reticulum and Golgi fractions of bovine corpora lutea. Arch. Biochem. Biophys. 191: 331, 1978.

    Article  CAS  PubMed  Google Scholar 

  49. Mitra S., Rao Ch. V. Receptors for gonadotropins and prostaglandins in lysosomes of bovine corpora lutea. Arch. Biochem. Biophys. 185: 126, 1978.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bibbins, P.E., Rao, C.V., Carman, F.R. et al. Role of luteal cell nucleus in the expression of gonadotropin action. J Endocrinol Invest 14, 391–400 (1991). https://doi.org/10.1007/BF03349088

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03349088

Key-words

Navigation