Skip to main content
Log in

Thyroid stimulation by placental factors

  • Clinical Symposium
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

There is now convincing evidence that the human placenta produces factors which have some role in regulating maternal thyroid function during normal pregnancy and are capable of inducing overt hyperthyroidism in some pregnant women and in patients with trophoblastic tumors. As far as the biochemical nature of these placental thyroid stimulators is concerned, a bulk of evidence indicates that hCG, which is abundant in the blood of pregnant women and patients with trophoblastic diseases and shares some structural similarities with human TSH, is the putative thyroid-stimulating factor. However, it is disturbing that most in vitro studies have failed to prove that hCG is truly capable of stimulating the human thyroid. Therefore, factors other than hCG have also to be considered, particularly some molecular variant forms of hCG with enhanced thyrotropic activity. Both the existence of tumor-associated hCG variants in patients with trophoblastic diseases and their ability to stimulate thyroid hormone release in human thyroid tissue have been demonstrated. To complicate things further, other variants of hCG have been identified and purified from pregnancy urine that have a thyroid inhibitory effect in human thyroid membranes. The variant forms of hCG have been shown to differ from the native hormone mainly in the carbohydrate moiety, with the more acidic, more glycosylated variants being the ones capable of stimulating the human thyroid and the more alkaline sialic acidic deficient variants, on the other hand, being potent thyroid inhibitors. Future studies should reveal if the different thyroid stimulators and thyroid inhibitors may possibly interact with specific regions of the human TSH receptor that confer their respective functional activities. An interaction of different hCG variants with stimulatory or inhibitory receptor domains could explain the complex nature of the thyroid regulatory actions of hCG and its variant forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tisne L., Barzelatto J., Stevenson, C. Estudio de function tiroidea durante el estado gravido-puerperal con el yodo radioactivo. Bol. Soc. Chilena de Obstet, y Ginec. 20: 246, 1955.

    CAS  Google Scholar 

  2. Hershman J.M. Hyperthyroidism caused by trophoblastic tumors. In: Ingbar S.H., Braverman L.E. (Eds.), Werner’s the thyroid, ed. 5. Lippincott, Philadelphia, 1986, p. 1085.

    Google Scholar 

  3. Nisula B.C., Taliadouros G.S., Carayon P. Primary and secondary biologic activities intrinsic to the human chorionic gonadotropin molecule. In: Segal S. (Ed.), Chorionic gonadotropin. Plenum Press, New York, 1980, p. 17.

    Chapter  Google Scholar 

  4. Amir S.M. Human chorionic gonadotropin: A negligible human thyroid stimulator. In: Ingbar S.H., Braverman L.E. (Eds.), Werner’s. The Thyroid, ed. 5. Lippincott, Philadelphia, 1986, p. 1088.

    Google Scholar 

  5. Kennedy R.L., Dame J. The role of hCG in regulation of the thyroid gland in normal and abnormal pregnancy. Obstet. Gynecol. 78: 298, 1991.

    PubMed  CAS  Google Scholar 

  6. Hershman J.M. Role of human chorionic gonadotropin as a thyroid stimulator. J. Clin. Endocrinol. Metab. 74: 258, 1992.

    PubMed  CAS  Google Scholar 

  7. Skjoldebrand L., Brundin J., Carlstrom A., Peterson T. Thyroid associated components in serum during normal pregnancy. Acta Endocrinol. 100: 504, 1982.

    PubMed  CAS  Google Scholar 

  8. Weeke J., Dybkjaer L., Granlie K. A longitudinal study of serum TSH and total and free iodothyronines during normal pregnancy. Acta Endocrinol. 101: 531, 1982.

    PubMed  CAS  Google Scholar 

  9. Price A., Griffiths L., Morris B.W. A longitudinal study of thyroid function in pregnancy. Clin. Chem. 35: 275, 1989.

    PubMed  CAS  Google Scholar 

  10. Pekonen F., Alfthan H., Stenman U.H., Ylikorkala O. Human chorionic gonadotropin (hCG) and thyroid function in early human pregnancy: circadian variation and evidence for intrinsic thyrotropic activity of hCG. J. Clin. Endocrinol. Metab. 66: 853, 1988.

    Article  PubMed  CAS  Google Scholar 

  11. Kimura M., Amino N., Tamaki H., Mitsuda N., Miyai K., Tanizawa O. Physiologic thyroid activation in normal early pregnancy is induced by circulating hCG. Obstet. Gynecol. 5: 775, 1990.

    Google Scholar 

  12. Glinoer D., De Nayer P., Bourdoux P., Lemone M., Robyn C., van Steirteghem A., Kinthaert J., Lejeune B. Regulation of maternal thyroid during pregnancy. J. Clin. Endocrinol. Metab. 71: 276, 1990.

    Article  PubMed  CAS  Google Scholar 

  13. Hoermann R., Ott M., Saller B., Loebig H., Schatz H., Mann K. Relationship between human chorionic gonadotropin and thyroid function in normal pregnancy. In: Beckers C., Reinwein D. (Eds.), The thyroid and pregnancy. Schattauer, Stuttgart, 1991, p. 65.

    Google Scholar 

  14. Hershman J.M. Trophoblastic tumors. In: Braverman L.E., Utiger R.D. (Eds.), Werner’s and Ingbar’s the thyroid, ed. 6. Lippincott, Philadelphia, 1992.

    Google Scholar 

  15. Pierce J.G., Parsons T.F. Glycoprotein hormones, structure and function. Ann. Rev. Biochem. 50: 465, 1981.

    Article  PubMed  CAS  Google Scholar 

  16. Hussa R.O. Human chorionic gonadotropin, a clinical marker: review of its biosynthesis. The Ligand Review 3 (Suppl. 2): 6, 1981.

    CAS  Google Scholar 

  17. Odell. W.D., Griffin J. Pulsatile secretion of human chorionic gonadotropin in normal adults. N. Engl. J.Med. 317: 1688, 1987.

    Article  PubMed  CAS  Google Scholar 

  18. Hoermann R., Spoettl G., Moncayo R., Mann K. Evidence for the presence of human chorionic gonadotropin (hCG) and free beta-subunit of hCG in the human pituitary. J. Clin. Endocrinol. Metab. 71: 179, 1990.

    Article  PubMed  CAS  Google Scholar 

  19. Fiddes J.C., Talmadge K. Structure, expression, and evolution of the genes for the human glycoprotein hormones. Rec. Progr. Horm. Res. 40: 43, 1984.

    PubMed  CAS  Google Scholar 

  20. Bo M., Boime I. Identification of the transscriptionally active genes of chorionic gonadotropin beta gene cluster in vivo. J. Biol. Chem. 267: 3179, 1992.

    PubMed  CAS  Google Scholar 

  21. Bahl O.P. Human chorionic gonadotropin. II. Nature of the carbohydrate units. J. Biol.Chem. 244: 575, 1969.

    PubMed  CAS  Google Scholar 

  22. Carayon P., Amir S., Nisula B.C. A competitive antagonist of thyrotropin: asialochorio-gonadotropin. Biochem. Biophys. Res. Commun. 97: 69, 1980.

    Article  PubMed  CAS  Google Scholar 

  23. Hoermann R., Schumm-Draeger P.M., Rehbach K., Mann K. Asialoagalacto-human chorionic gonadotropin, a carbohydrate-modified variant of human chorionic gonadotropin, antagonizes the stimulatory actions of bovine thyroid-stimulating hormone on thyroid function and HLA-DR expression in human thyroid in vitro and in vivo. J.Clin. Invest. 88: 1947, 1991.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Parmentier M., Libert F., Maenhautr C., Lefort A., Gerard C., Perret J., Van Sande J., Dumont J.E., Vassart G. Molecular cloning of the thyrotropin receptor. Science 246: 1620, 1989.

    Article  PubMed  CAS  Google Scholar 

  25. Nagayama Y., Kaufman K.D., Seto P., Rapoport B. Molecular cloning, sequence and functional expression of the cDNA for the human thyrotropin receptor. Biochem. Biophys. Res. Commun. 165: 1184, 1989.

    Article  PubMed  CAS  Google Scholar 

  26. McFarland K.C., Sprengel R., Phillips H., Kohler M., Rosemblit N., Nikolics K., Segaloff D., Seeburg P. Lutropin-choriogonadotropin receptor: an unusual member of the G protein-coupled receptor family. Science 245: 494, 1989.

    Article  PubMed  CAS  Google Scholar 

  27. Vassart G., Dumont J.E. The thyrotropin receptor and the regulation of thyrocyte function and growth. Endocr. Rev. 13: 596, 1992.

    PubMed  CAS  Google Scholar 

  28. Kenimer J.G., Hershman J.M., Higgins H.P. The thyrotropin in hydaditiform mole is human chorionic gonadotropin. J. Clin. Endocrinol. Metab. 40: 482, 1975.

    Article  PubMed  CAS  Google Scholar 

  29. Sowers J.R., Hershman J.M., Carlson H.E., Pekary A.E. Effect of human chorionic gonadotropin on thyroid function in euthyroid men. J. Clin. Endocrinol. Metab. 47: 898, 1978.

    Article  PubMed  CAS  Google Scholar 

  30. Carayon P., Lefort G., Nisula B.C. Interaction of human chorionic gonadotropin and human luteinizing hormone with human thyroid membranes. Endocrinology 106: 1907, 1980.

    Article  PubMed  CAS  Google Scholar 

  31. Hoermann R., Amir S.M., Ingbar S.H. Evidence that partially desialylated variants of human chorionic gonadotropin (hCG) are the factors in crude hCG that inhibit the response to thyrotropin in human thyroid membranes. Endocrinology 123: 1535, 1988.

    Article  PubMed  CAS  Google Scholar 

  32. Davies T.F., Platzer M. hCG-induced TSH receptor activation and growth acceleration in FRTL-5 thyroid cells. Endocrinology 118: 2149, 1986.

    Article  PubMed  CAS  Google Scholar 

  33. Hershman J.M., Lee H.Y., Sugawara M., Mirell C.J., Pang X.P., Yanagisawa M., Pekary A.E. Human chorionic gonadotropin stimulates iodide uptake, adenylate cyclase, and deoxyribonucleic acid synthesis in cultured rat thyroid cells. J. Clin. Endocrinol. Metab. 67: 74, 1988.

    Article  PubMed  CAS  Google Scholar 

  34. Hoermann R., Keutmann H.T., Amir S.M. Carbohydrate modifications transform human chorionic gonadotropin into a potent stimulator of adenosine 3′, 5′ — monophosphate and growth responses in FRTL-5 thyroid cells. Endocrinology 128: 1129, 1991.

    Article  PubMed  CAS  Google Scholar 

  35. Amir S.M., Sullivan R.C., Ingbar S.H. In vitro responses to crude and purified hCG in human thyroid membranes. J. Clin. Endocrinol. Metab. 51: 51, 1980.

    Article  PubMed  CAS  Google Scholar 

  36. Amir S.M., Mulrow N.I., Ingbar S.H. Phenol, a potent stimulator of adenylate cyclase in human thyroid membranes. Endocr. Res. Commun. 8: 83, 1981.

    Article  PubMed  CAS  Google Scholar 

  37. Amir S.M., Endo K., Osathanondt R., Ingbar S.H. Divergent responses by human and mouse thyroids to human chorionic gonadotropin in vitro. Mol. Cell. Endocrinol. 39: 31, 1985.

    Article  PubMed  CAS  Google Scholar 

  38. Tomer Y., Huber G.K., Davies T.F. Human chorionic gonadotropin (hCG) interacts directly with recombinant human TSH receptors. J. Clin. Endocrinol. Metab. 74: 1477, 1992.

    PubMed  CAS  Google Scholar 

  39. Stoffer R.P., Koenecke I.A., Chesky V.E., Hellwig C.A. The thyroid in pregnancy. Am. J. Obstet. Gynecol. 74: 300, 1957.

    PubMed  CAS  Google Scholar 

  40. Hainan K.E. The radioiodine uptake of the human thyroid in pregnancy. Clin. Sci. 17: 281, 1958.

    Google Scholar 

  41. Berger P., Madersbacher S., Mann K., Schwarz S., Wick G. Does tumour-derived hCG stimulate thyroid? Lancet 338: 454, 1991.

    Article  PubMed  CAS  Google Scholar 

  42. Kennedy R.L., Darne J., Griffiths H., Price A., Davies R., Cohn M. Thyroid-stimulatory effects of human chorionic gonadotropin in early pregnancy. Horm. Res. 33: 177, 1990.

    Article  PubMed  CAS  Google Scholar 

  43. Ashitaka Y., Tojo S. Human placental thyrotropins. In: Grudzinskas J.G., Teisner B., Seppälä M., (Eds.), Pregnancy proteins, biology, chemistry and clinical applications. Academic Press, New York, 1982, p. 357.

    Google Scholar 

  44. Hennen G., Pierce J.G., Freychet P. Human chorionic thyrotropin: Further characterization and study of its secretion during pregnancy. J. Clin. Endocrinol. Metab. 29: 581, 1969.

    Article  PubMed  CAS  Google Scholar 

  45. Harada A., Hershman J.M. Extraction of human chorionic thyrotropin (hCT) from term placentas: Failure to recover thyrotropic activity. J. Clin. Endocrinol. Metab. 47: 681, 1978.

    Article  PubMed  CAS  Google Scholar 

  46. Mann K., Schneider N., Hoermann R. Thyrotropic activity of isoelectric variants of human chorionic gonadotropin from trophoblastic tumors. Endocrinology 118: 1558, 1986.

    Article  PubMed  CAS  Google Scholar 

  47. Yazaki K., Yazaki C., Wakabayashi K., Igarashi M. Isoelectric heterogeneity of human chorionic gonadotropin: presence of choriocarcinoma specific components. Am. J. Obstet. Gynecol. 138: 189, 1980.

    PubMed  CAS  Google Scholar 

  48. Kobata A. Structures, function, and transformational changes of the sugar chains of glycohormones. J. Cell. Biochem. 37: 79, 1988.

    Article  PubMed  CAS  Google Scholar 

  49. Ballabio M., Poshychinda M., Ekins R.P. Pregnancy-induced changes in thyroid function: role of human chorionic gonadotropin as putative regulator of maternal thyroid. J. Clin. Endocrinol. Metab. 73: 824, 1991.

    Article  PubMed  CAS  Google Scholar 

  50. Pekonen F., Weintraub B.D. Interaction of crude and pure chorionic gonadotropin with the thyrotropin receptor. J. Clin. Endocrinol. Metab. 50: 280, 1980.

    Article  PubMed  CAS  Google Scholar 

  51. Amir S.M., Sullivan R.C., Ingbar S.H. The effect of desialylation on the in vitro interaction of human chorionic gonadotropin with human thyroid plasma membranes. Endocrinology 109: 1203, 1981.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mann, K., Hoermann, R. Thyroid stimulation by placental factors. J Endocrinol Invest 16, 378–384 (1993). https://doi.org/10.1007/BF03348862

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03348862

Key-words

Navigation