Skip to main content
Log in

About thyroid cells in culture

  • Review Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Virchow R.L.K. Die Cellularpathologie in ihrer Begrundung auf physiologische und patologische Gewebelehre. Berlin 1858.

  2. Rous P., Jones F.S. A method for obtaining suspensions of living cells from the fixed tissues, and for the plating out of individual cells. J. Exp. Med. 23: 549, 1916.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Gey G.O., Coffman W.D., Kubicek M.T. Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium. Cancer Res. 12: 264, 1952.

    Google Scholar 

  4. Eagle H. Nutrition needs of mammalian cells in tissue culture. Science 122: 501, 1955.

    Article  PubMed  CAS  Google Scholar 

  5. Nowell P.C. Phytohemagglutinin: An initiator of mitosis in cultures of normal human leukocytes. Cancer Res. 20: 462, 1960.

    PubMed  CAS  Google Scholar 

  6. Hayflick L., Moorhead P. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25: 585, 1961.

    Article  PubMed  CAS  Google Scholar 

  7. Pollack R. Readings in mammalian cell culture. Cold Spring Harbor Laboratories, 3: 95, 1981.

    Google Scholar 

  8. Harrison R.G. Observation on the living developing nerve fiber. Proc. Soc. Exp. Biol. Med. 4: 140, 1907.

    Article  Google Scholar 

  9. Bonassisi V., Sato G., Cohen A.I. Hormone-producing cultures of adrenal and pituitaly tumor origin. Proc. Natl. Acad. Sci. USA 48: 1184, 1962.

    Article  Google Scholar 

  10. Todaro G.J., Green H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J. Cell. Biol. 17: 299, 1963.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Thompson E.B., Tomkins G.M., Curran J.F. Induction of tyrosine alfa-ketoglutarate transaminase by steroid hormones in a newly established tissue culture cell line. Proc. Natl. Acad. Sci. USA 56: 296, 1966.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Yaffe D. Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc. Natl. Acad. Sci. USA 61: 477, 1968.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Hayashi I., Sato G.H. Replacement of serum by hormones permits growth of cells in a defined medium. Nature 259: 132, 1976.

    Article  PubMed  CAS  Google Scholar 

  14. Augusti-Tocco G., Sato G. Establishment of functional clonal lines of neurons from mouse neuroblastoma. Proc. Natl. Acad. Sci. USA 64: 311, 1969.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Hamilton W.G., Ham R.G. Clonal growth of Chinese hamster cell lines in protein-free media. In vitro 13: 537, 1977.

    Article  PubMed  CAS  Google Scholar 

  16. Abercrambie M., Heaysman J.E.M. Observations on the social behavior of cells in tissue culture. II. “Monolayering” of fibroblasts. Exp. Cell Res. 6: 293, 1954.

    Article  Google Scholar 

  17. Holley R.W., Kieman J.A. “Contact inhibition” of cell division in 3T3 cells. Proc. Natl. Acad. Sci. USA 60: 300, 1968.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Folkman J., Moscona A. Role of cell shape in growth control. Nature 273: 345, 1978.

    Article  PubMed  CAS  Google Scholar 

  19. Carrell A., Burrows M.T. Cultivation of adult tissues and organs outside the body. J. Amer. Med. Ass. 55: 1379, 1910.

    Article  Google Scholar 

  20. Carrell A, Burrows M.T. Cultivation in vitro of the thyroid gland. J. Exp. Med. 73: 416, 1911.

    Article  Google Scholar 

  21. Champy C. Résultats de la méthode de culture de tissus en dehors de l’organisme. Pr. méd. 22: 87, 1914.

    Google Scholar 

  22. Champy C. Quelques résultats de la méthode des cultures de tissus. V. La gland thyroide. Arch. Zool. Exp. Gen. 55: 61, 1916.

    Google Scholar 

  23. Ebeling A.H. Cultures pures d’epithelium thyreoidien. C. R. Soc. Biol. Paris 90: 1383, 1924 a.

    Google Scholar 

  24. Ebeling A.H. Action de l’epithelium thyreoidien en culture pure sur la croissance des fibroblastes. C. R. Soc. Biol. Paris 90: 1449, 1924 b.

    CAS  Google Scholar 

  25. Ebeling A.H. Cultures pures d’epithelium thyreoidien. Exp. Med. 41: 337, 1925.

    Article  CAS  Google Scholar 

  26. Demuth F. Über die Züchtung von Schilddrusenzellen in vitro. arch. Exp. Zellforsch. 13: 329, 1932.

    Google Scholar 

  27. Carpenter E. Differentiation of chick emblyos thyroids in vitro. Anat. Rec. Suppl. 75: 101, 1939.

    Google Scholar 

  28. Carpenter E. Differentiation of chick embryos thyroids in tissue culture. J. Exp. Zool. 89: 4044, 1942.

    Article  Google Scholar 

  29. Carpenter E., Beattie J., Chambars R.D. The uptake of 131I by emblyonic chick thyroid glands in vivo and in vitro. J. Exp. Zool. 127: 249, 1954 a.

    Article  Google Scholar 

  30. Carpenter E., Beattie J., Chambars R.D. Physiological activity of chick-embryo thyroids grown in vitro as indicated by uptake of radioactive iodine. Anat. Rec 118: 446, 1954 b.

    Google Scholar 

  31. Carpenter E., Rondon-Tarchetti T.J. Differentiation of embryonic rat thyroid in vivo and in vitro. J. Exp. Zool. 136: 393, 1957.

    Article  PubMed  CAS  Google Scholar 

  32. Gonzales F. Evidence of the functional differentiation of the embryonic chick thyroid in tissue culture. Texas Rep. Biol. Med. 12: 828, 1954.

    CAS  Google Scholar 

  33. Gonzales F. The functional differentiation of the emblyonic chick thyroid in roller tube culture. Exp. Cell Res. 10: 181, 1956.

    Article  PubMed  CAS  Google Scholar 

  34. Oppenheimer J.H., Tate J.R., Rawson K.W. Morphological and functional studies of thyroid tissue cultures. Exp. Cell Res. 11: 368, 1956.

    Article  PubMed  CAS  Google Scholar 

  35. Kojima M. Tissue culture studies on the differentiation and function of the thyroid gland. Bull. Tokyo Med. Dent. Univ. 7: 37, 1960.

    Google Scholar 

  36. Gaillard P.J., Schaberg A. Endocrine glands. Cells and tissues in culture. Willmer E.N. ed. Academic Press 643, 1965.

  37. Hilfer R. The stability of embryonic chick thyroid cell in vitro as judged by morphological and physiological criteria. Dev. Biol. 4: 1, 1962.

    Article  PubMed  CAS  Google Scholar 

  38. Fugo N.W., Witschi E. Removal of the hypophyseal primordium in the chick during the second day of incubation. Acta Biol. Latvica 8: 73, 1938.

    Google Scholar 

  39. Gaillard P.J. Ontwikkelingsverschijnselen in gekweekt embryonaal schildklierweefsel. Versl. gewone Vergad. Akad. Amst. 61: 27, 1952.

    Google Scholar 

  40. Gaillard P.J. Growth and differentiation of explanted tissues. Int. Rev. Cytol. 2: 331, 1953.

    Article  CAS  Google Scholar 

  41. Dumont J.E. Le métabolisme du glucose dans le tissu thyoidien et sa régulation par l’hormone thiréotrope. Annales de la Société Royale des Sciences Médicales et Naturelles de Bruxelles 18: 105, 1965.

    PubMed  CAS  Google Scholar 

  42. Sutherland E.W., Rall T.W. The properties of an adenine ribonucleotide produced with cellular particles, ATP, Mg++, and epinephrine or glucagon. J. Am. Chem. Soc. 79: 3608, 1957.

    Article  CAS  Google Scholar 

  43. Gillman A.G., Rall T.W. Studies on the relation of cyclic 3′,5′-AMP to TSH action in beef thyroid slices. Fed. Proc. 25: 617, 1966.

    Google Scholar 

  44. Pastan I. Effect of dibutyryl cyclic 3′,5′-AMP on the thyroid. Biochem. Biophys. Res. Commun. 237: 1228, 1966.

    Google Scholar 

  45. Pastan I., Macchia V. Mechanism of thyroid-stimulating hormone action. Studies with dibutyril 3′,5′-adenosine monophosphate and lecithinase C. J. Biol. Chem. 242: 5757, 1967.

    CAS  Google Scholar 

  46. Sutherland E.W., Hardman J.G., Butcher R.W., Broadus A.E. The biological role of cyclic AMP (some areas of contrast with cyclic GMP). Progress in endocrinology. Gual C., Ebling F.J.G. eds. Excerpta Med. Found. 26, 1968.

  47. Spooner B.S., Hilfer S.R. The expression of differentiation by chick embryo thyroid in cell culture. J. Cell Biol. 48: 225, 1971.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Dumont J.E. The action of thyrotropin on thyroid metabolism. Vitam. Hormon. 29: 287, 1971.

    Article  CAS  Google Scholar 

  49. Lamy F.C., Lecocq W.R., Delcroix C., Dumont J.E. Stimulation by thyrotropin in vitro of uridine incorporation into the RNA of thyroid slices. Hormon. Met. Res. 3: 414, 1971.

    Article  CAS  Google Scholar 

  50. Lissitzky S., Fayet G., Giraud A., Verrier B., Torresani J. Thyrotropin-induced aggregation and reorganization into follicles of isolated porcine-thyroid cells in culture. 1. Mechanism of action of thyrotrophin and metabolic properties. Eur. J. Biochem. 24: 88, 1971.

    CAS  Google Scholar 

  51. Fayet G., Michel-Bechet M., Lissitzky S. Thyrotropin-induced aggregation and reorganization into follicle of isolated porcine thyroid cells in culture. 2. Ultrastructural studies. Eur. J. Biochem. 24: 100, 1971.

    Article  PubMed  CAS  Google Scholar 

  52. Lissitzky S., Fayet G., Verrier B. Thyrotropin-receptor interaction and cyclic AMP-mediated effects in thyroid cells. Advances in Cyclic Nucleotide Research, Vol. 5. Drummond G.I., Greengard P., Robison G.A. eds. Raven Press 133, 1975.

  53. Rapoport B. Dog thyroid cells in monolayer tissue culture: Adenosine 3′,5′-cyclic monophosphate response to thyrotropic hormone. Endocrinology 98: 1189, 1976.

    Article  PubMed  CAS  Google Scholar 

  54. McCarrison R., Sankaran G. Effect of iodine on the growth and metabolism of thyroid tissue in vitro. Indian J. Med. Res. 21: 183, 1933.

    CAS  Google Scholar 

  55. Bray G.A. Increased sensitivity of the thyroid in iodine-depleted rats to the goitrogenic effects of thyrotropin. J.Clin. Invest. 47: 1640, 1968.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Ermans A.M., Camus M. Modifications of thyroid functions induced by chronic administration of iodide in the presence of “autonomous” thyroid tissue. Acta Endocrinol. 70: 463, 1972.

    PubMed  CAS  Google Scholar 

  57. Field J.B., Larsen P.R., Yamashita K., Mashiter K., Dekker A. Demonstration of iodide transport defect but normal iodide organification in nonfunctioning nodules of human thyroid glands. J. Clin. Invest. 52: 2404, 1973.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Van Sande J., Grenier G., Willems C., Dumont J.E. Inhibition of iodide of the activation of the thyroid cyclic 3′,5′-AMP system. Endocrinology 96: 781, 1975.

    Article  PubMed  Google Scholar 

  59. Gottesman M.M., LeCam A., Bukowski M., Pastan I. Isolation of multiple class of mutants of CHO cells resistant to cyclic AMP. Somatic Cell Gen. 6: 45, 1980.

    Article  CAS  Google Scholar 

  60. Winand R.J., Kohn L.D. Thyrotropin effects on thyroid cells in culture. Effects of trypsin on the thyrotropin receptor and on thyrotropin-mediated cyclic 3′–5′-AMP changes. J. Biol. Chem. 250: 6534, 1975.

    PubMed  CAS  Google Scholar 

  61. O’Connor M.K., Malone J.F., Cullen M.J. Longterm cultures of sheep thyroid cells. Follicular morphology and iodide trapping in the primary culture, and proliferative aspects of primary culture and first sub-culture. Acta Endocrinol. Suppl. 231: 93, 1980.

    Google Scholar 

  62. Coffino P., Gray J.W., Tomkins G.M. Cyclic AMP, a nonessential regulator of the cell cycle Proc. Natl. Acad. Sci. USA 72: 878, 1975.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Westermark B., Karlsson A.F., Walinder O. Thyrotropin is not a growth factor for human thyroid cells in culture. Proc. Natl. Acad. Sci. USA. 76: 2022, 1979.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Westermark K.F., Westermark B. Mitogenic effect of epidermal growth factor on sheep thyroid cells in culture. Exp. Cell Res. 138: 57, 1982.

    Article  Google Scholar 

  65. Westermark K.F., Karlsson F.A., Westermark B. Epidermal growth factor modulates thyroid growth and function in culture. Endocrinology 112: 1680, 1983.

    Article  PubMed  CAS  Google Scholar 

  66. Enick J.E., Ing K.W.A., Eggo M.C., Burrow G.N. Growth and differentiation in cultured human thyroid cells: effects of epiderrnal growth factor and thyrotropin. In vitro Cell. Dev. Biol. 22: 28, 1986.

    Article  Google Scholar 

  67. Roger P.P., Dumont J.E. Epidermal growth factor controls the proliferation and the expression of differentiation in canine thyroid cells in primary culture. Febs Lett. 144: 209, 1982.

    Article  PubMed  CAS  Google Scholar 

  68. Roger P.P., Dumont J.E. Factors controlling proliferation and differentiation of canine thyroid cells cultured in reduced serum conditions: effects of thyrotropin, cyclic AMP and growth factors. Mol. Cell. Endocrinol. 36: 79, 1984.

    Article  PubMed  CAS  Google Scholar 

  69. Ambesi-lmpiombato F.S., Park L.A.M., Coon H.G. Culture of hormone-dependent functional epithelial cells from rat thyroids. Proc. Natl. Acad. Sci. USA 77: 3455, 1980.

    Article  Google Scholar 

  70. Ambesi-Impiombato F.S., Picone R., Tramontano D. Influence of hormones and serum on growth and differentiation of the thyroid cell strain FRTL. Growth of cells in hormonally defined media. Cold Spring Harbor Conferences on cell proliferation. 9: 483, 1982.

    CAS  Google Scholar 

  71. Tramontano D., Chin W.W., Moses A.C., Ingbar S.H. Thyrotropin and dibutyryl cyclic AMP increase levels of c-myc and c-fos mRNAs in cultures rat thyroid cells. J. Biol. Chem. 261: 3919, 1986.

    PubMed  CAS  Google Scholar 

  72. Tramontano D., Moses A.C., Veneziani B.M., Ingbar S.H. Adenosine 3′,5′-monophosphate mediates both the mitogenic effect of thyrotropin and its ability to amplify the response to insulin-like growth factor I in FRTL5 cells. Endocrinology 122: 127, 1988.

    Article  PubMed  CAS  Google Scholar 

  73. Roger P.P., Dumont J.E. Thyrotrophin and differential expression of proliferation in dog thyroid cells in primaly culture. J. Endocr. 96: 241, 1983.

    Article  PubMed  CAS  Google Scholar 

  74. Nitsch L., Wollman S.H. Suspension culture of separated follicles consisting of differentiated thyroid epithelial cells. Proc. Natl. Acad. Sci. USA 77: 472, 1980.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  75. Nitsch L., Wollman S.H. Thyrotropin preparations are mitogenic for thyroid epithelial cells in follicles in suspension culture. Proc. Natl. Acad. Sci. USA 77: 2743, 1980.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Rapoport B., Jones A. Acute effects of thyroid-stimulating hormone on cultured thyroid morphology. Endocrinology 102: 175, 1978.

    Article  PubMed  CAS  Google Scholar 

  77. Tramontano D., Avivi A., Ambesi-lmpiombato F.S., Barak L., Geiger B., Schlessinger J. Thyrotropin induces changes in the morphology and the organization of microfilament structure in cultured thyroid cells. Exp. Cell Res. 137: 270, 1982.

    Article  Google Scholar 

  78. Westermark B., Porter K.R. Hormonally induced changes in the cytoskeleton of human thyroid cells in culture. J. Cell Biol. 94: 42, 1982.

    Article  PubMed  CAS  Google Scholar 

  79. Tramontano D., Cushing G., Moses A.C., Ingbar S.H. Insulin-like growth factor-I stimulates the growth of rat thyroid cells in culture and synergizes the stimulation of DNA synthesis induced by TSH and Graves’ IgG. Endocrinology 119: 940, 1986.

    Article  PubMed  CAS  Google Scholar 

  80. Errick J.E., Ing K.W.A., Eggo M.C., Burrow G.N. Growth and differentiation in cultured human thyroid cells: Effects of epidermal Growth Factor and Thyrotropin. In vitro Cell. Develop. Biol. 22: 28, 1986.

    Article  CAS  Google Scholar 

  81. Roger P.P., Van Heuverswyn B., Lambert C., Reuse S., Vassart G., Dumont J.E. Antagonistic effects of thyrotropin and epidermal growth factor on thyroglobulin mRNA level in cultured thyroid cells. Eur. J. Biochem. 152: 239, 1985.

    Article  PubMed  CAS  Google Scholar 

  82. Gerard C.M., Roger P.P., Dumont J.E. Thyroglobulin gene expression as a differentiation marker in primary cultures of calf thyroid cells. Mol. Cell. Endocrinol. 61: 23, 1989.

    Article  PubMed  CAS  Google Scholar 

  83. Santisteban P., Kohn L.D., Di Lauro R. Thyroglobulin gene expression is regulated by insulin and insulin-like growth factor I, as well as thyrotropin in FRTL5 thyroid cells. J. Biol. Chem. 262: 4048, 1987.

    PubMed  CAS  Google Scholar 

  84. Tramontano D., Moses A.C., Ingbar S.H. The role of adenosine 3′,5′-monophosphate in the regulation of receptor of thyrotropin and insulin-like growth factor I in the rat thyroid follicular cell. Endocrinology 122: 133, 1988.

    Article  PubMed  CAS  Google Scholar 

  85. Parmentier M., Libert F., Maenhaut C., Lefort A., Gérard C., Perret J., Van Sande J., Dumont J.E., Vassart G. Molecular cloning of the thyrotropin receptor. Science 246: 246, 1989.

    Article  Google Scholar 

  86. D’ercole A.J., Stiles A.D., Underwood L.E. Tissue concentration of somatomedine-C: further evidence for multiple sites of synthesis and paracrine or autocrine mechanisms of action. Proc. Natl. Acad. Sci. USA 81: 935, 1984.

    Article  PubMed Central  PubMed  Google Scholar 

  87. Clemmons D.R., Van Vyk J.J. Evidence for a functional role for endogenously produced somatomedine-like peptides in the regulation of DNA synthesis in cultured human fibroblast and porcine smooth muscle cells. J. Clin. Invest. 75: 1914, 1985.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  88. Minuto F., Barreca A., Del Monte T., Cariola G., Torre G.C., Giordano G. Immunoreactive insulin-like growth factor I (IGF-I) and IGF-I binding protein content in human thyroid tissue. J. Clin. Endocrinol. Metab. 68: 621, 1989.

    Article  PubMed  CAS  Google Scholar 

  89. Maciel R.B.M., Moses A.C., Villone G., Tramontano D., Ingbar S.H. Demonstration of the production and physiological role of insulin-like growth factor II in rat follicular cells in culture. J. Clin. Invest. 82: 1546, 1988.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  90. Bechtner G., Potscher C., Gartner R. Role of autocrine and paracrine factor in thyroid follicle growth. Thyroidol. Clin. Exp. 4: 1, 1992.

    PubMed  CAS  Google Scholar 

  91. Yang K.P., Samaan N.A., Liang Y.F., Castillo S.G. Role of insulin-like growth factor I in the autocrine regulation of cell growth in TT human medullary thyroid carcinoma cells. Henry Ford Hosp. Med. J. 40: 293, 1992.

    PubMed  CAS  Google Scholar 

  92. Yashiro T., Tsushima T., Murakami H., Obara T., Fujimoto Y., Shizume K., Ito K. Insulin-like growth factor II (IGF-II)/mannose-6-phosphate receptors are increased in primary human thyorid neoplasms. Eur. J. Cancer 27: 699, 1991.

    Article  PubMed  CAS  Google Scholar 

  93. Lazzaro D., Price M., De Felice M., Di Lauro R. The transcription factor TTF-1 is expressed at the onset of the thyroid and lung morphogenesis and in restricted regions of the fetal brain. Development 113: 1093, 1991.

    PubMed  CAS  Google Scholar 

  94. Veneziani B.M., Di Marino C., Salvatore P., Villone G., Perrotti N., Frunzio R., Tramontano D. Transfected insulin-like growth factor II modulates the mitogenic response of rat thyrocytes in culture. Mol. Cell. Endocrinol. 86: 11, 1992.

    Article  PubMed  CAS  Google Scholar 

  95. Villone G., De Amicis F., Veneziani B.M., Salzano S., Di Carlo A., Tramontano D. Fluctuation of intracellular cAMP are required to modulate thyroid cell proliferation. Submitted for pubblication.

  96. Beierwaltes W.H. Carcinoma of follicular epithelium. Werner’s The thyroid. Ingbar S.H., Braverman L.E. eds. J.B. Lippincott Company, 1319, 1986.

  97. Fusco A., Grieco M., Santoro M., Berlingieri M.T., Pilotti S., Pierotti M.A., Delia Porta G., Vecchio G. A new oncogene in human thyroid papillary carcinomas and their lymph-nodal metastases. Nature 328: 170, 1987.

    Article  PubMed  CAS  Google Scholar 

  98. Grieco M., Santoro M., Berlingieri M.T., Melillo R.M., Donghi R., Bongarzone I., Pierotti M.A., Delia Porta G., Fusco A., Vecchio G. PTC is a novel rearranged form of the ret protooncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 60: 557, 1990.

    Article  PubMed  CAS  Google Scholar 

  99. Santoro M., Carlomagno F., Hay I.D., Herrmann M.A., Grieco M. Melillo R.M., Pierotti M.A., Bongarzone I., Delia Porta G., Berger N., Peix J.L., Paulin C., Fabien N., Vecchio G., Jenkins R.B., Fusco A. Ret oncogene activation in human thyroid neoplasms is restricted to the papillary cancer subtype J. Clin. Invest. 89: 1517, 1992.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  100. Stoppelli M.P., Tacchetti C., Cubellis M.V., Corti A., Hearing V.J., Cassani G., Appella E., Blasi F. Autocrine saturation of pro-urokinase receptors on human A431 cells. Cell 45: 675, 1986.

    Article  PubMed  CAS  Google Scholar 

  101. Cassano S., Ragno P., Blasi F., Rossi G. Production of urokinase-type plasminogen activator by normal and transformed rat thyroid cells in culture. Exp. Cell Res. 182: 197, 1989.

    Article  PubMed  CAS  Google Scholar 

  102. Chazembalt G.D., Nagayama Y., Kaufman K.D., Rapoport B. Functional expression of recombinant human thyrotropin receptors in non thyroidal eukariotic cells provides evidences that homologous desensitization to TSH stimulation requires a cell specific factor. Endocrinology 127: 1240, 1990.

    Article  Google Scholar 

  103. Brunell P.A., Wolman S.R., Steinberg S. Propagation of Varicella-Zoster virus in a diploid strain of embryonic thyroid cells from the Rhesus monkey. J. Infect. Dis. 125: 545, 1972.

    Article  PubMed  CAS  Google Scholar 

  104. Dumont J.E., Lamy F., Roger P.P., Maenhaut C. Physiological and pathological regulation of thyroid cell proliferation and differentiation by thyrotropin and other factors. Physiol. Rev. 72: 667, 1992.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tramontano, D., Villone, G. About thyroid cells in culture. J Endocrinol Invest 17, 875–890 (1994). https://doi.org/10.1007/BF03347795

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03347795

Keywords

Navigation