Skip to main content
Log in

DNA-flow cytometry of 207 pituitary adenomas: Ploidy, proliferation, and prognosis

  • Original Articles
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

The principal factors involved in pituitary adenoma formation are unknown. DNA-flow cytometry is a useful study providing an estimation of a tumor proliferative rate. In this study, DNA-flow cytometry was performed to evaluate its capability to both assess prognosis and predict recurrence. Two hundred and seven fresh pituitary adenoma specimens were assessed by flow cytometry. Pre-operative endocrine function, previous medical treatment, radiographic appearance, surgical findings and immunohistochemistry were recorded for each patient. Patient outcomes were assessed at a mean follow-up of 5.3±3.1 yr. Endocrinologically inactive pituitary adenomas were predominantly euploids (50.8%). The highest proliferation rates occurred in Nelson’s syndrome and the lowest in Cushing’s disease. A significant difference in proliferation was observed with prolactinomas and acromegaly when a medical treatment was performed before primary surgery. Massive histological invasiveness was directly associated with a significant increase in proliferation rate. Radiotherapy did not affect the recurrence rate (4.4%) statistically. In conclusion, DNA-flow cytometry was found to be useful for determining ploidy and obtaining an overview of cell cycle status. It was helpful in identifying patients requiring closer follow-up, such as those with invasive adenomas and Nelson’s syndrome. No single parameter revealed by DNA-flow cytometry could predict tumor prognosis or recurrence in the follow-up of 7.5±1.3 yr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buchfelder M. OP und Strahlentherapie bei Hypophysenadenomen. MMW Fortschr Med 2001, 143: 40–2.

    CAS  PubMed  Google Scholar 

  2. Buchfelder M, Fahlbusch R, Adams EF, Kiesewetter F, Thierauf P. Proliferation parameters for pituitary adenomas. Acta Neurochir 1996, 65 (Suppl): 18–21.

    CAS  Google Scholar 

  3. Garcia R, Bueno A, Castañon S, et al. Study ofthe DNA content by flow cytometry and proliferation in 281 brain tumors. Oncology 1997, 54: 112–7.

    Article  CAS  PubMed  Google Scholar 

  4. Lahiri M, Sehgal S, Kak VK, Banerjee AK. Flowcytometric and histopathological correlation of primary intracranial neoplasms. Neurol India 2001, 49: 124–7.

    CAS  PubMed  Google Scholar 

  5. Meij BP, Lopes MBS, Ellegala DB, Alden TD, Laws ER. The long-term significance of microscopic dural invasion in 354 patients with pituitary adenomas treated with transsphenoidal surgery. J Neurosurg 2002, 96: 195–208.

    Article  PubMed  Google Scholar 

  6. Scheithauer BW, Kovacs KT, Laws ER, Randall RV. Pathology of invasive pituitary tumors with special reference to functional classification. J Neurosurg 1986, 65: 733–44.

    Article  CAS  PubMed  Google Scholar 

  7. Selman WR, Laws ER, Scheithauer BW, Carpenter SM. The ocurrence of dural invasion in pituitary adenomas. J Neurosurg 1986, 64: 402–7.

    Article  CAS  PubMed  Google Scholar 

  8. Fahlbusch R, Schrell U, Buchfelder M. Neurochirurgische Behandlung von Adenomen der Hypophyse. Nervenheilkunde 1985, 62: 1556–60.

    Google Scholar 

  9. Losa M, Franzin A, Mortini P, Terreni MR, Mangili F, Giovanelli M. Usefulness of markers of cell proliferation in the management of pituitary adenomas. Clin Sci (Lond) 1998, 95: 129–35.

    Article  CAS  Google Scholar 

  10. Boeck G. Current status of flow cytometry in cell and molecular biology. Int Rev Cytol 2001, 204: 239–98.

    Article  CAS  PubMed  Google Scholar 

  11. Jaroszeski MJ, Radcliff G. Fundamentals of flow cytometry. Mol Biotechnol 1999, 11: 37–53.

    Article  CAS  PubMed  Google Scholar 

  12. Magennis DP. Nuclear DNA in histological and cytological speciments: measurement and prognostic significance. Br J Biomed Sci 1997, 54: 140–8.

    CAS  PubMed  Google Scholar 

  13. O’Gorman MRG. Clinical relevantfunctional flow cytometry assays. Clin Lab Med 2001, 21: 779–94.

    PubMed  Google Scholar 

  14. Wedemeyer N, Potter T. Flow cytometry: an ‘old’ tool for novel applications in medical genetics. Clin Genet 2001, 60: 1–8.

    Article  CAS  PubMed  Google Scholar 

  15. Givan AL. Principles of flow cytometry: an overview. Methods Cell Biol 2001, 63: 19–50.

    Article  CAS  PubMed  Google Scholar 

  16. Nunez R. Introduction to the field of cytometry and its importance in Biomedicine. Curr Issues Mol Biol 2001, 3: 37–8.

    CAS  PubMed  Google Scholar 

  17. Villas BH. Flow cytometry: an overview. Cell Vis 1998, 5: 56–61.

    CAS  PubMed  Google Scholar 

  18. Ormerod MG, Tribukait B, Garretti W. Consensus report of the task force on standartisation of DNA flow cytometry in clinical pathology. Anal Cell Pathol 1998, 17: 103–10.

    CAS  PubMed  Google Scholar 

  19. Bononi PL, McCoy JJr., Martinez AJ, Janosky JE, Amico JA. Flow cytometric analysis of growth hormone-secreting pituitary adenomas.Horm Res 1994, 42: 262–6.

    Article  CAS  PubMed  Google Scholar 

  20. Fitzgibbons PL, Appley AJ, Turner RR, et al. Flow cytometric analysis of pituitary tumors. Cancer 1988, 62: 1556–60.

    Article  CAS  PubMed  Google Scholar 

  21. Kiesewetter F, Haneke E, Lennert K, Hornstein PO, Fartasch M. Cutaneous lymphoepiteloid lymphoma (Lennert’s lymphoma). Am J Dermatopathol 1989, 116: 549–54.

    Article  Google Scholar 

  22. Kiesewetter F, Hornstein OP, Hermanek P, Herrlinger A, Eberhard S. Möglichkeiten der DNS-Impulszytophotometrie bei Nierenkarzinomen. Urologe 1987, 26: 162–7.

    CAS  PubMed  Google Scholar 

  23. Hardy J. Transsphenoidal microsurgery of the normal and pathological pituitary. Clin Neurosurg 1979, 16: 185–217.

    Google Scholar 

  24. Symon L, Jakubowski J, Kendall B. Surgical treatment of giant pituitary adenomas. J Neurol Neurosurg Psychiatry 1979, 42: 973–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Baisch H, Göde W, Linden WA. Analysis of PCP-data to determine the fractions of cells in the various phases of the cell cycle. Radiat Environ Biophys 1979, 12: 31–9.

    Article  Google Scholar 

  26. Hsu SM, Raine L, Fange H. A comparative study of the peroxidaseantiperoxidase method and an avidin-biotin complex method for studying polypeptide hormones with radioimmunoassay antibodies. Am J Clin Pathol 1981, 5: 734–8

    Google Scholar 

  27. Anniko M, Holm LE, Tribukait B, Werner S, Wersäll J. The clinical implications of DNA characteristics in human pituitary disease. Acta Otolaryngol 1981, 379(Suppl): 21–8.

    Article  Google Scholar 

  28. Anniko M, Tribukait B, Wersäll J. DNA ploidy and cell phase in human pituitary tumors. Cancer 1984, 53: 1708–13.

    Article  CAS  PubMed  Google Scholar 

  29. Anniko M, Wersäll J. DNA studies for prediction of prognosis of pituitary adenomas? Adv Biosci 1988, 69: 45–51.

    Google Scholar 

  30. Castillo JL, Kawaguchi F, Madariaga J, et al. Factors that affect DNA content analysis by flow cytometry. Rev Med Chil 1999, 127: 1385–97.

    Article  CAS  PubMed  Google Scholar 

  31. Lloyd HM, Jacobi JM, Willgoss DA. DNA synthesis by pituitary tumours, with reference to plasma hormone levels and to effects of bromocriptine. Clin Endocrinol (Oxf) 1995, 43: 79–85.

    Article  CAS  Google Scholar 

  32. Lüdecke DK, Beck-Bornholdt HP, Saeger W, Schmidt W. Tumour ploidy in DNA histograms of pituitary adenomas. Acta Neurochir (Wier) 1985, 76: 18–22.

    Article  Google Scholar 

  33. Nagashima T, Murovic JA, Hoshino T, Wilson CB, DeArmond SJ. The proliferative potential of human pituitary tumors in situ. J Neurosurg 1986, 64: 588–93.

    Article  CAS  PubMed  Google Scholar 

  34. Lei T, Bai X, Liu K, Hu W, Xue D, Jiang X. Hormone secretion by cell culture GH-PRL secreting pituitary adenomas: effects of bromocriptine. J Tongji Med Univ 1998, 18: 161–3.

    Article  CAS  PubMed  Google Scholar 

  35. Amar AP, Hinton DR, Krieger MD, Weiss MH. Invasive pituitary adenomas: significance of proliferation parameters. Pituitary 1999, 2: 117–22.

    Article  CAS  PubMed  Google Scholar 

  36. Mastronardi L, Guiducci A, Buttaro FM, Cristallini EG, Puzzilli F, Maira. Relationship among DNA index, S-phaseand invasive behaviour in anterior pituitary adenomas. A cytometric study of 61 cases with Feulgen-positive DNA-analysis. Surg Neurol 2001, 56: 27–32.

    Article  CAS  PubMed  Google Scholar 

  37. Krämer A, Saeger W, Tallen G, Lüdecke DK. DNA measurement, proliferation markers and other factors in pituitary adenomas. Endocr Pathol 1994, 5: 198–211.

    Article  Google Scholar 

  38. Visakorpi T. Proliferative activity determined by DNA flow cytometry and proliferationg cell nuclear antigen (PCNA) immunohistochemistry as a prognostic factor in prostatic carcinoma. J Pathol 1992,168: 7–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. O. Machado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machado, A.L.O., Nomikos, P., Kiesewetter, F. et al. DNA-flow cytometry of 207 pituitary adenomas: Ploidy, proliferation, and prognosis. J Endocrinol Invest 28, 795–801 (2005). https://doi.org/10.1007/BF03347568

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03347568

Key-words

Navigation