The overtraining syndrome in athletes: A stress-related disorder

Abstract

Physical exercise is a type of allostatic load for several endocrine systems, notably the hypothalamic-pituitary-adrenal (HPA) axis. Athletes undergoing a strenuous training schedule can develop a significant decrease in performance associated with systemic symptoms or signs: the overtraining syndrome (OTS). This is a stress-related condition that consists of alteration of physiological functions and adaptation to performance, impairment of psychological processing, immunological dysfunction and biochemical abnormalities. Universally agreed diagnostic criteria for OTS are lacking. The pituitary-adrenal response to a standardized exercise test is usually reduced in overtrained athletes. This HPA dysfunction could reflect the exhaustion stage of Selye’s general adaptation syndrome. The most attractive hypothesis that accounts for the observed neuro-endocrine-immune dysregulation is the Smith’s cytokine hypothesis of OTS. It assumes that physical training can produce muscle and skeletal trauma, thus generating a local inflammatory reaction. With the excessive repetition of the training stimulus the local inflammation can generate a systemic inflammatory response. The main actors of these processes are the cytokines, polypeptides that modulate HPA function in and outside the brain at nearly every level of activity. It is hoped that future research will focus on endogenous risk factors for morbidities related to the neuro-endocrine-immune adaptation to exercise.

References

  1. 1.

    Selye H. Syndrome produced by diverse nocuous agents. Nature 1936, 138: 32.

    Article  Google Scholar 

  2. 2.

    Sterling P, Eyer J. Allostasis: a new paradigm to explain arousal pathology. In: Fisher S, Reason J eds. Handbook of life stress, cognition and health. New York: John Wiley. 1988, 629–49.

    Google Scholar 

  3. 3.

    McEwen BS, Stellar E. Stress and the individual. Mechanisms leading to disease. Arch Intern Med 1993, 153: 2093–101.

    PubMed  CAS  Article  Google Scholar 

  4. 4.

    McEwen BS. Protective and damaging effects of stress mediators. N Engl J Med 1998, 338: 171–9.

    PubMed  CAS  Article  Google Scholar 

  5. 5.

    Farrell PA, Garthwaite TL, Gustafson AB. Plasma adrenocorticotropin and cortisol responses to submaximal and exhaustive exercise. J Appl Physiol 1983, 55: 1441–4.

    PubMed  CAS  Google Scholar 

  6. 6.

    Herman JP, Cullinan WE. Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci 1997, 20: 78–84.

    PubMed  CAS  Article  Google Scholar 

  7. 7.

    Luger A, Deuster PA, Kyle SB, et al. Acute hypothalamic-pituitary-adrenal responses to the stress of treadmill exercise. Physiologic adaptations to physical training. N Engl J Med 1987, 316: 1309–15.

    PubMed  CAS  Article  Google Scholar 

  8. 8.

    Duclos M, Corcuff JB, Pehourcq F, Tabarin A. Decreased pituitary sensitivity to glucocorticoids in endurance-trained men. Eur J Endocrinol 2001, 144: 363–8.

    PubMed  CAS  Article  Google Scholar 

  9. 9.

    Duclos M, Corcuff JB, Rashedi M, Fougere V, Manier G. Trained versus untrained men: different immediate post-exercise responses of pituitary adrenal axis. A preliminary study. Eur J Appl Physiol Occup Physiol 1997, 75: 343–50.

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    Wittert GA, Livesey JH, Espiner EA, Donald RA. Adaptation of the hypothalamopituitary adrenal axis to chronic exercise stress in humans. Med Sci Sports Exerc 1996, 28: 1015–9.

    PubMed  CAS  Article  Google Scholar 

  11. 11.

    Haas DA, George SR. Single or repeated mild stress increases synthesis and release of hypothalamic corticotropin-releasing factor. Brain Res 1988, 461: 230–7.

    PubMed  CAS  Article  Google Scholar 

  12. 12.

    Bremner JD, Licinio J, Darnell A, et al. Elevated CSF corticotropin-releasing factor concentrations in posttraumatic stress disorder. Am J Psychiatry 1997, 154: 624–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  13. 13.

    Giordano R, Rossetto R, Baffoni C, et al. Adrenal sensitivity to ACTH1-24 as function of age, body weight and pituitary function. J Endocrinol Invest 2002, 25 (10 Suppl): 85–6.

    PubMed  CAS  Google Scholar 

  14. 14.

    Heim C, Ehlert U, Hellhammer DH. The potential role of hypocortisolism in the pathophysiology of stress-related bodily disorders. Psychoneuroendocrinology 2000, 25: 1–35.

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    Fellmann N, Bedu M, Boudet G, et al. Inter-relationships between pituitary-adrenal hormones and catecholamines during a 6-day Nordic ski race. Eur J Appl Physiol Occup Physiol 1992, 64: 258–65.

    PubMed  CAS  Article  Google Scholar 

  16. 16.

    Viru AM, Hackney AC, Valja E, Karelson K, Janson T, Viru M. Influence of prolonged continuous exercise on hormone responses to subsequent exercise in humans. Eur J Appl Physiol 2001, 85: 578–85.

    PubMed  CAS  Article  Google Scholar 

  17. 17.

    Kanaley JA, Hartman ML. Cortisol and growth hormone responses to exercise. The Endocrinologist 2002, 12: 421–32.

    Article  Google Scholar 

  18. 18.

    Del Corral P, Sampedro R, Hartsell M, et al. Reduced cortisol potentiates the exercise-induced increase in corticotropin to a greater extent in trained compared with untrained men. Metabolism 1999, 48: 390–4.

    PubMed  Article  Google Scholar 

  19. 19.

    Armstrong LE, Van Heest JL. The unknown mechanism of the overtraining syndrome: clues from depression and psychoneuroimmunology. Sports Med 2002, 32: 185–209.

    PubMed  Article  Google Scholar 

  20. 20.

    Fry RW, Morton AR, Keast D. Overtraining in athletes. An update. Sports Med 1991, 12: 32–65.

    PubMed  CAS  Article  Google Scholar 

  21. 21.

    Koutedakis Y, Sharp NC. Seasonal variations of injury and overtraining in elite athletes. Clin J Sport Med 1998, 8: 18–21.

    PubMed  CAS  Article  Google Scholar 

  22. 22.

    Kentta G, Hassmen P, Raglin JS. Training practices and overtraining syndrome in Swedish age-group athletes. Int J Sports Med 2001, 22: 460–5.

    PubMed  CAS  Article  Google Scholar 

  23. 23.

    Budgett R. Fatigue and underperformance in athletes: the overtraining syndrome. Br J Sports Med 1998, 32: 107–10.

    PubMed Central  PubMed  CAS  Article  Google Scholar 

  24. 24.

    Israel S. Die Erscheinungsformen des Übertrainings. Sportmed. 1958, 9: 207–9.

    Google Scholar 

  25. 25.

    Lehmann M, Foster C, Keul J. Overtraining in endurance athletes: a brief review. Med Sci Sports Exerc 1993, 25: 854–62.

    PubMed  CAS  Article  Google Scholar 

  26. 26.

    Mackinnon LT, Rubinstein I. Chronic exercise training effects on immune function. Med Sci Sports Exerc 2000, 32: S369–76.

    PubMed  CAS  Article  Google Scholar 

  27. 27.

    Nieman DC. Special feature for the Olympics: effects of exercise on the immune system: exercise effects on systemic immunity. Immunol Cell Biol 2000, 78: 496–501.

    PubMed  CAS  Article  Google Scholar 

  28. 28.

    MacKinnon LT. Special feature for the Olympics: effects of exercise on the immune system: overtraining effects on immunity and performance in athletes. Immunol Cell Biol 2000, 78: 502–9.

    PubMed  CAS  Article  Google Scholar 

  29. 29.

    Gleeson M, Pyne DB. Special feature for the Olympics: effects of exercise on the immune system: exercise effects on mucosal immunity. Immunol Cell Biol 2000, 78: 536–44.

    PubMed  CAS  Article  Google Scholar 

  30. 30.

    Urhausen A, Kindermann W. Diagnosis of overtraining: what tools do we have? Sports Med 2002, 32: 95–102.

    PubMed  Article  Google Scholar 

  31. 31.

    Urhausen A, Gabriel HH, Weiler B, Kindermann W. Ergometric and psychological findings during overtraining: a long-term follow-up study in endurance athletes. Int J Sports Med 1998, 19: 114–20.

    PubMed  CAS  Article  Google Scholar 

  32. 32.

    Hedelin R, Wiklund U, Bjerle P, Henriksson-Larsen K. Cardiac autonomic imbalance in an overtrained athlete. Med Sci Sports Exerc 2000, 32: 1531–3.

    PubMed  CAS  Article  Google Scholar 

  33. 33.

    Sacknoff DM, Gleim GW, Stachenfeld N, Coplan NL. Effect of athletic training on heart rate variability. Am Heart J 1994, 127: 1275–8.

    PubMed  CAS  Article  Google Scholar 

  34. 34.

    Vervoorn C, Quist AM, Vermulst LJ, Erich WB, de Vries WR, Thijssen JH. The behaviour of the plasma free testosterone/cortisol ratio during a season of elite rowing training. Int J Sports Med 1991, 12: 257–63.

    PubMed  CAS  Article  Google Scholar 

  35. 35.

    Urhausen A, Gabriel H, Kindermann W. Blood hormones as markers of training stress and overtraining. Sports Med 1995, 20: 251–76.

    PubMed  CAS  Article  Google Scholar 

  36. 36.

    Lehmann M, Schnee W, Scheu R, Stockhausen W, Bachl N. Decreased nocturnal catecholamine excretion: parameter for an overtraining syndrome in athletes? Int J Sports Med 1992, 13: 236–42.

    PubMed  CAS  Article  Google Scholar 

  37. 37.

    Minetto M, Paccotti P, Ventura M, et al. Overtraining syndrome: an integrated approach to diagnosis using a maximal exercise test and surface electromyography. Program of the International Congress “Hormones, Body Composition and Physical Performances”, Turin, Italy, 2002, p. 106 (abstract).

    Google Scholar 

  38. 38.

    Cleare AJ. The neuroendocrinology of chronic fatigue syndrome. Endocr Rev 2003, 24: 236–52.

    PubMed  CAS  Google Scholar 

  39. 39.

    Deuster PA, Petrides JS, Singh A, Chrousos GP, Poth M. Endocrine response to high-intensity exercise: dose-dependent effects of dexamethasone. J Clin Endocrinol Metab 2000, 85: 1066–73.

    PubMed  CAS  Google Scholar 

  40. 40.

    Demitrack MA, Dale JK, Straus SE, et al. Evidence for impaired activation of the hypothalamic-pituitary-adrenal axis in patients with chronic fatigue syndrome. J Clin Endocrinol Metab 1991, 73: 1224–34.

    PubMed  CAS  Article  Google Scholar 

  41. 41.

    Ottenweller JE, Sisto SA, McCarty RC, Natelson BH. Hormonal responses to exercise in chronic fatigue syndrome. Neuropsychobiology 2001, 43: 34–41.

    PubMed  CAS  Article  Google Scholar 

  42. 42.

    Gaab J, Huster D, Peisen R, et al. Hypothalamic-pituitary-adrenal axis reactivity in chronic fatigue syndrome and health under psychological, physiological, and pharmacological stimulation. Psychosom Med 2002, 64: 951–62.

    PubMed  CAS  Article  Google Scholar 

  43. 43.

    Hudson JI, Pope HG. The concept of affective spectrum disorder: relationship to fibromyalgia and other syndromes of chronic fatigue and chronic muscle pain. Baillieres Clin Rheumatol 1994, 8: 839–56.

    PubMed  CAS  Article  Google Scholar 

  44. 44.

    Yunus MB. Psychological aspects of fibromyalgia syndrome: a component of the dysfunctional spectrum syndrome. Baillieres Clin Rheumatol 1994, 8: 811–37.

    PubMed  CAS  Article  Google Scholar 

  45. 45.

    Clauw DJ, Chrousos GP. Chronic pain and fatigue syndromes: overlapping clinical and neuroendocrine features and potential pathogenic mechanisms. Neuroimmunomodulation 1997, 4: 134–53.

    PubMed  CAS  Google Scholar 

  46. 46.

    Yehuda R. Sensitization of the hypothalamic-pituitary-adrenal axis in posttraumatic stress disorder. Ann NY Acad Sci 1997, 821: 57–75.

    PubMed  CAS  Article  Google Scholar 

  47. 47.

    Yehuda R. Psychoneuroendocrinology of post-traumatic stress disorder. Psychiatr Clin North Am 1998, 21: 359–79.

    PubMed  CAS  Article  Google Scholar 

  48. 48.

    Yehuda R. Post-traumatic stress disorder. N Engl J Med 2002, 346: 108–14.

    PubMed  CAS  Article  Google Scholar 

  49. 49.

    De Bellis MD, Chrousos GP, Dorn LD, et al. Hypothalamic-pituitary-adrenal axis dysregulation in sexually abused girls. J Clin Endocrinol Metab 1994, 78: 249–55.

    PubMed  Google Scholar 

  50. 50.

    Yehuda R, Levengood RA, Schmeidler J, Wilson S, Guo LS, Gerber D. Increased pituitary activation following metyrapone administration in post-traumatic stress disorder. Psychoneuroendocrinology 1996, 21: 1–16.

    PubMed  CAS  Article  Google Scholar 

  51. 51.

    Ala Y, Palluy O, Favero J, Bonne C, Modat G, Dornand J. Hypoxia/reoxygenation stimulates endothelial cells to promote interleukin-1 and interleukin-6 production. Effects of free radical scavengers. Agents Actions 1992, 37: 134–9.

    PubMed  CAS  Article  Google Scholar 

  52. 52.

    Smith LL. Cytokine hypothesis of overtraining: a physiological adaptation to excessive stress? Med Sci Sports Exerc 2000, 32: 317–31.

    PubMed  CAS  Article  Google Scholar 

  53. 53.

    Turnbull AV, Rivier CL. Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action. Physiol Rev 1999, 79: 1–71.

    PubMed  CAS  Google Scholar 

  54. 54.

    Neveu PJ. Brain-immune cross-talk. Stress 2003, 6: 3–4.

    PubMed  CAS  Article  Google Scholar 

  55. 55.

    Buller KM. Neuroimmune stress responses: reciprocal connections between the hypothalamus and the brainstem. Stress 2003, 6: 11–7.

    PubMed  CAS  Article  Google Scholar 

  56. 56.

    Tomlinson JW, Moore J, Cooper MS, et al. Regulation of expression of 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue: tissue-specific induction by cytokines. Endocrinology 2001, 142: 1982–9.

    PubMed  CAS  Google Scholar 

  57. 57.

    Cooper MS, Bujalska I, Rabbitt E, Et al. Modulation of 11beta-hydroxysteroid dehydrogenase isozymes by proinflammatory cytokines in osteoblasts: an autocrine switch from glucocorticoid inactivation to activation. J Bone Miner Res 2001, 16: 1037–44.

    PubMed  CAS  Article  Google Scholar 

  58. 58.

    Angeli A, Dovio A, Sartori ML, et al. Interactions between glucocorticoids and cytokines in the bone microenvironment. Ann NY Acad Sci 2002, 966: 97–107.

    PubMed  CAS  Article  Google Scholar 

  59. 59.

    Dovio A, Sartori ML, Masera RG, et al. Autocrine down-regulation of glucocorticoid receptors by interleukin-11 in human osteoblast-like cell lines. J Endocrinol 2003, 177: 109–17.

    PubMed  CAS  Article  Google Scholar 

  60. 60.

    Hayley S, Merali Z, Anisman H. Stress and cytokine-elicited neuroendocrine and neurotransmitter sensitization: implications for depressive illness. Stress 2003, 6: 19–32.

    PubMed  CAS  Article  Google Scholar 

  61. 61.

    Papanicolaou DA, Petrides JS, Tsigos C, et al. Exercise stimulates interleukin-6 secretion: inhibition by glucocorticoids and correlation with catecholamines. Am J Physiol 1996, 271: E601–5.

    PubMed  CAS  Google Scholar 

  62. 62.

    Angeli A, Minetto M, Ventura M, Dovio A, Paccotti P. Exercise and the hypothalamic-pituitary-adrenal axis. Program of the International Congress “Hormones, Body composition and Physical performances”, Turin, Italy, 2002, p. 36 (abstract).

    Google Scholar 

  63. 63.

    Ceci SJ. Can one forget to remember? Science 2003, 301: 465.

    CAS  Article  Google Scholar 

  64. 64.

    Fry AC, Kraemer WJ, Ramsey LT. Pituitary-adrenal-gonadal responses to high-intensity resistance exercise overtraining. J Appl Physiol 1998, 85: 2352–9.

    PubMed  CAS  Google Scholar 

  65. 65.

    Connor KM, Davidson JR. Generalized anxiety disorder: neurobiological and pharmacotherapeutic perspectives. Biol Psychiatry 1998, 15: 1286–94.

    Article  Google Scholar 

  66. 66.

    Brebner K, Hayley S, Zacharko R, Merali Z, Anisman H. Synergistic effects of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha: central monoamine, corticosterone, and behavioral variations. Neuropsychopharmacology 2000, 22: 566–80.

    PubMed  CAS  Article  Google Scholar 

  67. 67.

    Hayley S, Merali Z, Anisman H. Stress and cytokine-elicited neuroendocrine and neurotransmitter sensitization: implications for depressive illness. Stress 2003, 6: 19–32.

    PubMed  CAS  Article  Google Scholar 

  68. 68.

    Gutierrez EG, Banks WA, Kastin AJ. Murine tumor necrosis factor alpha is transported from blood to brain in the mouse. J Neuroimmunol 1993, 47: 169–76.

    PubMed  CAS  Article  Google Scholar 

  69. 69.

    Plotkin SR, Banks WA, Kastin AJ. Comparison of saturable transport and extracellular pathways in the passage of interleukin-1 alpha across the blood-brain barrier. J Neuroimmunol 1996, 67: 41–7.

    PubMed  CAS  Google Scholar 

  70. 70.

    Banks WA. Cytokines, CVSs, and the blood-brain barrier. In: Ader R, Felten DI, Cohen N eds. Psychoneuroimmunology, Vol. 2. New York: academic Press. 2001, 483–98.

    Google Scholar 

  71. 71.

    Ericsson A, Arias C, Sawchenko PE. Evidence for an intramedullary prostaglandin-dependent mechanism in the activation of stress-related neuroendocrine circuitry by intravenous interleukin-1. J Neurosci 1997, 17: 7166–79.

    PubMed  CAS  Google Scholar 

  72. 72.

    Rivest S. How circulating cytokines trigger the neural circuits that control the hypothalamic-pituitary-adrenal axis. Psychoneuroendocrinology 2001, 26: 761–88.

    PubMed  CAS  Article  Google Scholar 

  73. 73.

    Mark KS, Trickler WJ, Miller DW. Tumor necrosis factor-alpha induces cyclooxygenase-2 expression and prostaglandin release in brain microvessel endothelial cells. J Pharmacol Exp Ther 2001, 297: 1051–8.

    PubMed  CAS  Google Scholar 

  74. 74.

    Dantzer R, Bluthe RM, Aubert A, et al. Cytokine actions on behavior. In: Rothwell NJ eds. Cytokines and the Nervous System. London: Landes. 1996, 117–44.

    Google Scholar 

  75. 75.

    Maier SF, Watkins LR. Cytokines for psychologists: implications of bidirectional immune-to-brain communication for understanding behavior, mood, and cognition. Psychol Rev 1998, 105: 83–107.

    PubMed  CAS  Article  Google Scholar 

  76. 76.

    Mayhan WG. Cellular mechanisms by which tumor necrosis factor-alpha produces disruption of the blood-brain barrier. Brain Res 2002, 927: 144–52.

    PubMed  CAS  Article  Google Scholar 

  77. 77.

    Buller KM. Neuroimmune stress responses: reciprocal connections between the hypothalamus and the brainstem. Stress 2003, 6: 11–7.

    PubMed  CAS  Article  Google Scholar 

  78. 78.

    Di Luigi L, Guidetti L, Romanelli F, Baldari C, Conte D. Acetylsalicylic acid inhibits the pituitary response to exercise-related stress in humans. Med Sci Sports Exerc 2001, 33: 2029–35.

    PubMed  Article  Google Scholar 

  79. 79.

    Irwin J, Ahluwalia P, Zacharko RM, Anisman H. Central norepinephrine and plasma corticosterone following acute and chronic stressors: influence of social isolation and handling. Pharmacol Biochem Behav 1986, 24: 1151–4.

    PubMed  CAS  Article  Google Scholar 

  80. 80.

    de Kloet RE. Hormones, brain and stress. Endocr Regul 2003, 37: 51–68.

    PubMed  Google Scholar 

  81. 81.

    Bhatnagar S, Dallman M. Neuroanatomical basis for facilitation of hypothalamic-pituitary-adrenal responses to a novel stressor after chronic stress. Neuroscience 1998, 84: 1025–39.

    PubMed  CAS  Article  Google Scholar 

  82. 82.

    Nelson PT, Soma LA, Lavi E. Microglia in diseases of the central nervous system. Ann Med 2002, 34: 491–500.

    PubMed  CAS  Article  Google Scholar 

  83. 83.

    Hirsch EC, Breidert T, Rousselet E, Hunot S, Hartmann A, Michel PP. The role of glial reaction and inflammation in Parkinson’s disease. Ann NY Acad Sci 2003, 991: 214–28.

    PubMed  CAS  Article  Google Scholar 

  84. 84.

    Blasko I, Grubeck-Loebenstein B. Role of the immune system in the pathogenesis, prevention and treatment of Alzheimer’s disease. Drugs Aging 2003, 20: 101–13.

    PubMed  CAS  Article  Google Scholar 

  85. 85.

    Tsigos C, Chrousos GP. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res 2002, 53: 865–71.

    PubMed  Article  Google Scholar 

  86. 86.

    Habib KE, Gold PW, Chrousos GP. Neuroendocrinology of stress. Endocrinol Metab Clin North Am 2001, 30: 695–728.

    PubMed  CAS  Article  Google Scholar 

  87. 87.

    Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med 1999, 340: 115–26.

    PubMed  CAS  Article  Google Scholar 

  88. 88.

    Libby P. Inflammation in atherosclerosis. Nature 2002, 420: 868–74.

    PubMed  CAS  Article  Google Scholar 

  89. 89.

    Fraser R, Ingram MC, Anderson NH, Morrison C, Davies E, Connell JM. Cortisol effects on body mass, blood pressure, and cholesterol in the general population. Hypertension 1999, 33: 1364–8.

    PubMed  CAS  Article  Google Scholar 

  90. 90.

    Rosmond R. The glucocorticoid receptor gene and its association to metabolic syndrome. Obes Res 2002, 10: 1078–86.

    PubMed  CAS  Article  Google Scholar 

  91. 91.

    Terzolo M, Pia A, Ali A, et al. Adrenal incidentaloma: a new cause of the metabolic syndrome? J Clin Endocrinol Metab 2002, 87: 998–1003.

    PubMed  CAS  Article  Google Scholar 

  92. 92.

    Pihl E, Jurimae T. Relationships between body weight change and cardiovascular disease risk factors in male former athletes. Int J Obes Relat Metab Disord 2001, 25: 1057–62.

    PubMed  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Minetto MD.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Angeli, A., Minetto, M., Dovio, A. et al. The overtraining syndrome in athletes: A stress-related disorder. J Endocrinol Invest 27, 603–612 (2004). https://doi.org/10.1007/BF03347487

Download citation

Key-words

  • Overtraining syndrome
  • HPA axis
  • cytokines
  • brain-immune interactions