Skip to main content
Log in

Bone mineral content and bone mineral density at lumbar spine and forearm in Chinese girls aged 6–18 years

  • Original Articles
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

We investigated the age-related bone mineral content (BMC), bone mineral density (BMD) and the tempo of growth in BMC and BMD at lumbar spine and forearm in 455 Chinese girls aged 6–18 yr. BMC and BMD at the anteroposterior lumbar spine (LS), the left forearm (radius+ulna ultradistal, R+UUD) and one-third region (R+U1/ 3) were measured using a dual-energy X-ray bone densitometer (DXA). BMC and BMD exhibited different change patterns with the age changes. There were significant correlations between age, height, weight and BMC and BMD at LS, R+UUD and R+U1/3 sites. BMC and BMD increased significantly with increments in pubertal stages at LS, R+UUD and R+U1/3 sites. In conclusion, our study showed that Tanner stage had a significant positive association with BMC and BMD of the lumbar spine and forearm. The differences were found in the growth tempo of BMC and BMD within a region and between the spine and forearm. Both BMD and BMC were recommended to evaluate the bone health in children and adolescents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seeman E, Hopper JL, Bach LA, et al. Reduced bone mass in daughters of women with osteoporosis. N Engl J Med 1989, 320: 554–8.

    Article  PubMed  CAS  Google Scholar 

  2. Seeman E, Tsalamandris C, Formica C, Hopper JL, McKay J. Bone density in daughters of women with hip fractures. J Bone Miner Res 1994, 9: 739–43.

    Article  PubMed  CAS  Google Scholar 

  3. Evans RA, Marel GM, Lancaster EK, Kos S, Evans M, Wong SY. Bone mass is low in relatives of osteoporotic patients. Ann Intern Med 1998, 109: 870–3.

    Article  Google Scholar 

  4. Cromer B, Harel Z. Adolescents: at increased risk for osteoporosis? Clin Pediatr (Phila) 2000, 39: 565–74.

    Article  CAS  Google Scholar 

  5. Gao P, Xu L, Qing M, Tian J, Yu W, Lin S. Bone mineral density and exercises: a cross-sectional study on Chinese athletes. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2000, 22: 61–6.

    PubMed  CAS  Google Scholar 

  6. Matsukura T, Kagamimori S, Yamagami T, et al. Reference data of forearm bone mineral density in healthy Japanese male and female subjects in the second decade based on calendar age and puberty onset: Japanese Population Based Osteoporosis (JPOS) study. Osteoporos Int 2000, 11: 858–65.

    Article  PubMed  CAS  Google Scholar 

  7. Sabatier JP, Guaydier-Souquieres G, Laroche D, et al. Bone mineral acquisition during adolescence and early adulthood: a study in 574 healthy females 10–24 years of age. Osteoporos Int 1996, 6: 141–8.

    Article  PubMed  CAS  Google Scholar 

  8. Matkovic V, Jelic T, Wardlaw GM, et al. Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J Clin Invest 1994, 93: 799–808.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Nguyen TV, Maynard LM, Towne B, et al. Sex differences in bone mass acquisition during growth: the Fels Longitudinal Study. J Clin Densitom 2001, 4: 147–57.

    Article  PubMed  CAS  Google Scholar 

  10. Bass S, Delmas PD, Pearce G, Hendrich E, Tabensky A, Seeman E. The differing tempo of growth in bone size, mass, and density in girls is region-specific. J Clin Invest 1999, 104: 795–804.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Fournier PE, Rizzoli R, Slosman DO, Theintz G, Bonjour JP. Asynchrony between the rates of standing height gain and bone mass accumulation during puberty. Osteoporos Int 1997, 7: 525–32.

    Article  PubMed  CAS  Google Scholar 

  12. Zhang XZ, Kalu DN, Erbas B, Hopper JL, Seeman E. The effect of gonadectomy on bone size, mass and volumetric density in growing rats may be gender-, site-, and growth hormone-dependent. J Bone Miner Res 1999, 14: 802–9.

    Article  PubMed  CAS  Google Scholar 

  13. Bailey DA, Wedge JH, McCulloch RG, Martin AD, Bernhardson SC. Epidemiology of fractures of the distal end of the radius in children as associated with growth. J Bone Joint Surg Am 1989, 71: 1225–31.

    PubMed  CAS  Google Scholar 

  14. Seeman E, Duan Y, Fong C, Edmonds J. Fracture site-specific deficits in bone size and volumetric density in men with spine or hip fractures. J Bone Miner Res 2001, 16: 120–7.

    Article  PubMed  CAS  Google Scholar 

  15. Tanner JM. Physical growth and development. In: Forfar JO, Arnell CC, eds. Textbook of pediatrics. 2nd ed. Scotland, UK7: Churchill Livingstone. 249–303.

  16. Liao EY, Wu XP, Deng XG, et al. Age-related bone mineral density, accumulated bone loss rate and prevalence of osteoporosis at multiple skeletal sites in chinese women. Osteoporos Int 2002, 13: 669–76.

    Article  PubMed  Google Scholar 

  17. Liao EY, Wu XP, Luo XH, et al. Establishment and evaluation of bone mineral density reference databases appropriate for diagnosis and evaluation of osteoporosis in Chinese women. J Bone Miner Metab 2003, 21: 184–92.

    Article  PubMed  Google Scholar 

  18. Wu XP, Liao EY, Zhang H, Shan PF, Cao XZ, Liu SP. Establishment of BMD reference plots and determination of peak BMD at multiple skeletal regions in mainland Chinese women and the diagnosis of osteoporosis. Osteoporos Int 2004, 15: 71–9.

    Article  PubMed  Google Scholar 

  19. Wang Y, Wang JQ. A comparison of international references for the assessment of child and adolescent overweight and obesity in different populations. Eur J Clin Nutr 2002, 56: 973–82.

    Article  PubMed  CAS  Google Scholar 

  20. Glastre C, Braillon P, David L, Cochat P, Meunier PJ, Delmas PD. Measurement of bone mineral content of the lumbar spine by dual energy X-ray absorptiometry in normal children: correlations with growth parameters. J Clin Endocrinol Metab 1990, 70: 1330–3.

    Article  PubMed  CAS  Google Scholar 

  21. Van Coeverden S, De Ridder C, Roos J, Van’t Hof MA, Netelenbos C. Pubertal maturation characteristics and the rate of bone mass development longitudinally toward menarche. J Bone Miner Res 2001, 16: 774–81.

    Article  PubMed  Google Scholar 

  22. Seeman E. Reduced bone density in women with fractures: contribution of low peak bone density and rapid bone loss. Osteoporos Int 1994, 4 (Suppl 1): 15–25.

    Article  PubMed  Google Scholar 

  23. Bachrach LK, Hastie T, Wang MC, Narasimhan B, Marcus R. Bone mineral acquisition in healthy Asian, Hispanic, Black and Caucasian youth: a longitudinal study. J Clin Endocrinol Metab 1999, 84: 4702–12.

    PubMed  CAS  Google Scholar 

  24. Gilsanz V, Skaggs DL, Kovanlikaya A, et al. Differential effect of race on the axial and appendicular skeletons of children. J Clin Endocrinol Metab 1998, 83: 1420–7.

    PubMed  CAS  Google Scholar 

  25. Wang MC, Aguirre M, Bhudhinkanok GC, et al. Bone mass and hip axis length in healthy Asians, Black, Hispanic, and white American youths. J Bone Miner Res 1997, 12: 1922–35.

    Article  PubMed  CAS  Google Scholar 

  26. Nelson DA, Simpson PM, Johnson CC, Barondess DA, Kleerekoper M. The accumulation of whole body skeletal mass in third- and fourth-grade children: effects of age, gender, ethnicity, and body composition. Bone 1997, 20: 73–8.

    Article  PubMed  CAS  Google Scholar 

  27. El-Hajj Fuleihan Gh, Baddoura R, Awada H, Salam N, Salamoun M, Rizk P. Low peak bone mineral density in healthy Lebanese subjects. Bone 2002, 31: 520–8.

    Article  PubMed  CAS  Google Scholar 

  28. Finkelstein JS, Lee ML, Sowers M, et al. Ethnic variation in bone density in premenopausal and early perimenopausal women: effects of anthropometric and lifestyle factors. J Clin Endocrinol Metab 2002, 87: 3057–6.

    Article  PubMed  CAS  Google Scholar 

  29. Wu XP, Liao EY, Huang G, Dai RC, Zhang H. A comparison study of the reference curves of bone mineral density at different skeletal sites in native Chinese, Japanese, and American Caucasian women. Calcif Tissue Int 2003, 73: 122–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, S.Y., Shan, P.F., Xie, H. et al. Bone mineral content and bone mineral density at lumbar spine and forearm in Chinese girls aged 6–18 years. J Endocrinol Invest 30, 205–209 (2007). https://doi.org/10.1007/BF03347426

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03347426

Key Words

Navigation