Skip to main content
Log in

Positive association of serum interleukin-1β and CRH levels in women with pre-term labor

  • Original Articles
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Objective: The aim of this study was to investigate the hypothesis that interleukin-1β (IL-1β) might be involved in the increase of the circulating levels of placental-derived CRH leading to the initiation of pre-term labor. Subjects and methods: Forty-eight primigravidae with a singleton viable pregnancy between 28 and 34 weeks of gestation were studied. The subjects were divided in two groups: group A consisted of 30 pregnant women (mean age±SD; 22±1.1 yr old) presented with preterm labor (mean gestational age±SD; 30.6±2.3 weeks) and group B consisted of 18 pregnant women (24±2.6 yr old) with normal pregnancies (29.8±3.1 weeks). CRH and IL-1β levels were measured in blood specimens collected from all the study subjects on admission. Results: Women of group A presented significantly higher serum CRH levels (mean±SE; 1.18±1.83 ng/ml) compared to those of group B (0.48±0.67 ng/ml) (p<0.01). Similarly, serum IL-1β levels were significantly higher in women of group A (0.45±0.12 pg/ml) compared to those of group B (0.31±0.08 pg/ml) (p<0.01). A positive correlation was found between serum IL-1β and CRH (r=0.68, p=0.001) in women of group A (pre-term labor). Conclusions: Our findings suggest that the increased levels of IL-1β and CRH found in pregnant women presented with pre-term labor might be involved in the pathophysiologic mechanism of the latter. Furthermore, a positive interaction might exist between IL-1β and placental CRH which might lead to enhanced production of the second, facilitating, thus, the onset of labor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Health Organisation: International of diseases and related healthy problems. 10th revision, Vol 2, Geneva: WHO. 1993.

    Google Scholar 

  2. Vogel I, Thorsen P, Curry A, Sandager P, Uldbjerg N. Biomarkers for the prediction of preterm delivery. Acta Obstet Gynecol Scand 2005, 84: 516–25.

    Article  PubMed  Google Scholar 

  3. Keelan JA, Coleman M, Mitchell MD. The molecular mechanisms of term and preterm labor: recent progress and clinical implications. Clin Obstet Gynecol 1997, 40: 460–78.

    Article  PubMed  CAS  Google Scholar 

  4. Challis JRG, Matthews SG, Gibb W, Lye SJ. Endocrine and paracrine regulation of birth at term and preterm. Endocr Rev 2000, 21: 514–50

    PubMed  CAS  Google Scholar 

  5. McLean M, Bisits A, Davies J, Woods R, Lowry P, Smith R. A placental clock controlling the length of human pregnancy. Nat Med 1995, 1: 460–3.

    Article  PubMed  CAS  Google Scholar 

  6. Schulte HM, Healy DL. Corticotropin releasing hormone-and adreno-corticotropin-like immunoreactivity in human placenta, peripheral and uterine vein plasma. Horm Metab Res 1987, 16(Suppl): 44–6.

    CAS  Google Scholar 

  7. Grino M, Chrousos GP, Margioris AN. The corticotropin releasing hormone gene is expressed in human placenta. Biochem Biophys Res Commun 1987, 148: 1208–14.

    Article  PubMed  CAS  Google Scholar 

  8. Petraglia F, Sawchenko PE, Rivier J, Vale W. Evidence for local stimulation of ACTH secretion by corticotropin-releasing factor in human placenta. Nature 1987, 328: 717–9.

    Article  PubMed  CAS  Google Scholar 

  9. Sehringer B, Zahradnik HP, Simon M, Ziegler R, Noethling C, Schaefer WR. mRNA expression profiles for corticotrophinreleasing hormone, urocortin, CRH-binding protein and CRH receptors in human term gestational tissues determined by real-time quantitative RT-PCR. J Mol Endocrinol 2004, 32: 339–48.

    Article  PubMed  CAS  Google Scholar 

  10. Smith R, Mesiano S, McGrath S. Hormone trajectories leading to human birth. Regul Pept 2002, 108: 159–64.

    Article  PubMed  CAS  Google Scholar 

  11. Wadhwa PD, Garite TJ, Porto M, et al. Placental corticotropin-releasing hormone (CRH), spontaneous preterm birth, and fetal growth restriction: a prospective investigation. Am J Obstet Gynecol 2004, 191: 1063–9.

    Article  PubMed  CAS  Google Scholar 

  12. Wewers MD, Dare HA, Winnard AV, Parker JM, Miller DK. IL-1 beta-converting enzyme (ICE) is present and functional in human alveolar macrophages: macrophage IL-1 beta release limitation is ICE independent. J Immunol 1997, 159: 5964–72.

    PubMed  CAS  Google Scholar 

  13. Opsjln SL, Wathen NC, Tingulstad S, et al. Tumor necrosis factor, interleukin-1, and interleukin-6 in normal human pregnancy. Am J Obstet Gynecol 1993, 169: 397–404.

    Article  PubMed  CAS  Google Scholar 

  14. Mastorakos G, Chrousos GP, Weber JS. Recombinant interleukin-6 activates the hypothalamic-pituitary-adrenal axis in humans. J Clin Endocrinol Metab 1993, 77: 1690–4.

    PubMed  CAS  Google Scholar 

  15. Mastorakos G, Magiakou MA, Chrousos GP. Effects of the immune/inflammatory reaction on the hypothalamic-pituitary-adrenal axis. Ann N Y Acad Sci 1995, 771: 438–48.

    Article  PubMed  CAS  Google Scholar 

  16. Petraglia F, Sutton S, Vale W. Neurotransmitters and peptides modulate the release of immunoreactive corticotrophin-releasing factor from cultured human placental cells. Am J Obstet Gynecol 1989, 160: 247–51.

    Article  PubMed  CAS  Google Scholar 

  17. Petraglia F, Florio P, Nappi C, Genazzani AR. Peptide signalling in human placenta and membranes: autocrine, paracrine and endocrine mechanisms. Endocr Rev 1996, 17: 156–86.

    PubMed  CAS  Google Scholar 

  18. Holzman C, Jetton J, Siler-Khodr T, Fisher R, Rip T. Second trimester corticotropin-releasing hormone levels in relation to preterm delivery and ethnicity. Obstet Gynecol 2001, 97: 657–63.

    Article  PubMed  CAS  Google Scholar 

  19. Majzoub JA, Karalis KP. Placental corticotropin-releasing hormone: function and regulation. Am J Obstet Gynecol 1999, 180: S242–6.

    Article  PubMed  CAS  Google Scholar 

  20. Riley SC, Walton JC, Herlick JM, Challis JR. The localization and distribution of corticotropin-releasing hormone in the human placenta and fetal membranes throughout gestation. J Clin Endocrinol Metab 1991, 72: 1001–7.

    Article  PubMed  CAS  Google Scholar 

  21. Erickson K, Thorsen P, Chrousos G, et al. Preterm birth: associated neuroendocrine, medical, and behavioral riskfactors. J Clin Endocrinol Metab 2001, 86: 2544–52.

    PubMed  CAS  Google Scholar 

  22. Ruiz RJ, Fullerton J, Brown CE, Dudley DJ. Predicting risk of preterm birth: the roles of stress, clinical riskfactors, and corticotropin-releasing hormone. Biol Res Nurs 2002, 4: 54–64.

    Article  PubMed  Google Scholar 

  23. Smith R. The timing of birth. Sci Am 1999, 280: 68–75.

    Article  PubMed  CAS  Google Scholar 

  24. McLean M, Bisits A, Davies J, Woods R, Lowry P, Smith R. A placental clock controlling the length of human pregnancy. Nat Med 1995, 1: 460–3.

    Article  PubMed  CAS  Google Scholar 

  25. Grammatopoulos D, Hillhouse EW. Role of corticotropin-releasing hormone in onset of labour. Lancet 1999, 354: 1546–9.

    Article  PubMed  CAS  Google Scholar 

  26. Chan EC, Falconer J, Madsen G, et al. A corticotropin-releasing hormone type 1 receptor antagonist delays parturition in sheep. Endocrinology 1998, 139: 3357–60.

    Article  PubMed  CAS  Google Scholar 

  27. Grammatopoulos DK, Hillhouse EW. Activation of protein kinase C by oxytocin inhibits the biological activity of the human myometrial corticotropin-releasing hormone receptor at term. Endocrinology 1999, 140: 585–94.

    PubMed  CAS  Google Scholar 

  28. Stevens MY, Challis JRG, Lye SJ. Corticotropin-releasing hormone receptor subtype 1 (CRH-R1) is significantly upregulated at the time of labor in the human myometrium. J Clin Endocrinol Metab 1998, 83: 1705–10.

    Google Scholar 

  29. Alvarez-de-la-Rosa M, Rebollo FJ, Codoceo R, Gonzalez Gonzalez A. Maternal serum interleukin 1, 2, 6, 8 and interleukin-2 receptor levels in preterm labor and delivery. Eur J Obstet Gynecol Reprod Biol 2000, 88: 57–60.

    Article  PubMed  CAS  Google Scholar 

  30. Perlstein RS, Whitnall MH, Abrams JS, Mougey EH, Neta R. Synergistic roles of interleukin-6, interleukin-1, and tumor necrosis factor in the adrenocorticotropin response to bacterial lipopolysaccharide in vivo. Endocrinology 1993, 132: 946–52.

    PubMed  CAS  Google Scholar 

  31. Mastorakos G, Bamberger C, Chrousos GP. Neuroendocrine regulation of the immune process. In: Plotnikoff NP ed. Cytokines-Stress and Immunity. In the series: Modern Endocrinology and Diabetes. CRC Press LLC, USA. 1999, 17–37.

    Google Scholar 

  32. Keelan JA, Sato T, Mitchell MD. Interleukin (IL)-6 and IL-8 production by human amnion: regulation by cytokines, growth factors, glucocorticoids, phorbol esters, and bacterial lipopolysaccharide. Biol Reprod 1997, 57: 1438–44.

    Article  PubMed  CAS  Google Scholar 

  33. Shim SS, Romero R, Hong JS, et al. Clinical significance of intra-amniotic inflammation in patients with preterm premature rupture of membranes. Am J Obstet Gynecol 2004, 191: 1339–45.

    Article  PubMed  Google Scholar 

  34. Bry K, Hallman M. Synergistic stimulation of amnion cell prostaglandin E2 synthesis by interleukin-1, tumor necrosis factor and products from activated human granulocytes. Prostaglandins Leukot Essent Fatty Acids 1991, 44: 241–5.

    Article  PubMed  CAS  Google Scholar 

  35. Steinborn A, Geisse M, Kaufmann M. Expression of cytokine receptors in the placenta in term and preterm labour. Placenta 1998, 19: 165–70.

    Article  PubMed  CAS  Google Scholar 

  36. Hagan P, Poole S, Bristow AF. Immunosuppressive activity of corticotrophin-releasing factor. Inhibition of interleukin-1 and interleukin-6 production by human mononuclear cells. Biochem J 1992, 281: 251–4.

    CAS  Google Scholar 

  37. Singh VK, Leu CSJ. Enhancing effect of corticotropinreleasing neurohormone on the production of interleukin-1 and interleukin-2. Neurosci Lett 1990, 120: 151–4.

    Article  PubMed  CAS  Google Scholar 

  38. Agelaki S, Tsatsanis C, Gravanis A, Margioris AN. Corticotropin-Releasing hormone augments proinflammatory cytokine production from macrophages in vitro and in lipopolysaccharide-induced endotoxin shock in mice. Infect Immun 2002, 70: 6068–74.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Zhao J and Karalis KP. Regulation of Nuclear Factor-κB by Corticotropin-Releasing hormone in mouse thymocytes. Mol Endocrinol 2002, 16: 2561–70.

    Article  PubMed  CAS  Google Scholar 

  40. Ghizzoni L, Mastorakos G, Vottero A, et al. Corticotropinreleasing hormone (CRH) inhibits steroid biosynthesis by cultured human granulosa-lutein cells in a CRH and Interleukin-1 receptor-mediated fashion. Endocrinology 1997, 138: 4806–11.

    PubMed  CAS  Google Scholar 

  41. Rice GE, Freed KA, Aitken MA, Jacobs RA. Gestational-and labour-associated changes in the relative abundance of prostaglandin G/H synthase-1 and -2 mRNA in ovine placenta. J Mol Endocrinol 1995, 14: 237–45.

    Article  PubMed  CAS  Google Scholar 

  42. Mitchell MD, Romero R, Edwin SS, Trautman MS. Prostaglandins and parturition. Reprod Fertil Dev 1995, 7: 623–32.

    Article  PubMed  CAS  Google Scholar 

  43. Mitchell MD, Edwin SS, Lundin-Schiller S, Silver RM, Smotkin D, Trautman MS. Mechanism of interleukin -1β stimulation of human amnion prostaglandin biosynthesis: mediation via a novel inducible cyclooxygenase. Placenta 1993, 14: 615–25.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Vitoratos MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitoratos, N., Mastorakos, G., Kountouris, A. et al. Positive association of serum interleukin-1β and CRH levels in women with pre-term labor. J Endocrinol Invest 30, 35–40 (2007). https://doi.org/10.1007/BF03347393

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03347393

Key-words

Navigation