Skip to main content
Log in

Germline and somatic thyroid hormone receptor mutations in man

  • Review Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Thyroid hormone plays important roles in metabolism, growth, and differentiation. Germline mutations in thyroid hormone receptor β (TRβ) have been identified in many individuals with resistance to thyroid hormone (RTH), a syndrome of hyposensitivity to T3. However, it has become increasingly apparent that somatic mutations can also occur in individual tissues, and are associated with tumors and malignancies in man. Herein we review the occurrence and identification of germline and somatic TR mutations and characterization of their pathological effects on hormone resistance and tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McKenna NJ, Lanz RB, O’Malley BW. Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev 1999, 20: 321–44.

    PubMed  CAS  Google Scholar 

  2. Yen PM. Physiological and molecular basis of thyroid hormone action. Physiol Rev 2001, 81: 1097–142.

    PubMed  CAS  Google Scholar 

  3. Zhang J, Lazar MA. The mechanism of action of thyroid hormones. Annu Rev Physiol 2000, 62: 439–66.

    Article  PubMed  CAS  Google Scholar 

  4. Cheng SY. Multiple mechanisms for regulation of the transcriptional activity of thyroid hormone receptors. Rev Endocr Metab Disord 2000, 1: 9–18.

    Article  PubMed  CAS  Google Scholar 

  5. Wood WM, Dowding JM, Haugen BR, Bright TM, Gordon DF, Ridgway EC. Structural and functional characterization of the genomic locus encoding the murine gB 2 thyroid hormone receptor. Mol Endocrinol 1994, 8: 1605–17.

    PubMed  CAS  Google Scholar 

  6. Bradley DJ, Towle HC, Young WS. Spatial and temporal expression of a- and gB-thyroid hormone receptor mRNAs, including the gB2-subtype, in the developing mammalian system. J Neurosci 1992, 12: 2288–302.

    PubMed  CAS  Google Scholar 

  7. Feng X, Jiang Y, Meltzer P, Yen PM. Thyroid hormone regulation of hepatic genes in vivo detected by complementary DNA microarray. Mol Endocrinol 2000, 14: 947–55.

    Article  PubMed  CAS  Google Scholar 

  8. Williams GR, Brent GA. Thyroid hormone response elements. In: B. Weintraub ed. Molecular Endocrinology: Basic concepts and clinical correlations. New York: Raven Press 1995, 217–39.

    Google Scholar 

  9. Glass CK Differential recognition of target genes by nuclear receptor monomers, dimers and heterodimers. Endo Rev 199415: 391–407.

    CAS  Google Scholar 

  10. Brent GA, Dunn MK, Harney JW, Gulick T, Larsen PR, Moore DD. Thyroid hormone aporeceptor represses T3- inducible promoters and blocks activity of the retinoic acid receptor. New Biologist 1989, 1: 329–36.

    PubMed  CAS  Google Scholar 

  11. Torchia J, Glass C, Rosenfeld MG. Co-activators and co-repressors in the integration of transcriptional responses. Curr Opin Cell Biol 1998, 10: 373–83.

    Article  PubMed  CAS  Google Scholar 

  12. Ito M, Roeder RG. The TRAP/SMCC/Mediator complex and thyroid hormone receptor function. Trends Endocrinol Metab 2001, 12: 127–34.

    Article  PubMed  CAS  Google Scholar 

  13. Rachez C, Freedman LP. Mediator complexes and transcription. Curr Opin Cell Biol 2001, 13: 274–80.

    Article  PubMed  CAS  Google Scholar 

  14. Sharma D, Fondell JD. Ordered recruitment of histone acetyltransferases and the TRAP/Mediator complex to thyroid hormone-responsive promoters in vivo. Proc Natl Acad Sci U S A 2002, 99: 7934–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Shang Y, Hu X, DiRenzo J, Lazar MA, Brown M. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 2000, 103: 843–52.

    Article  PubMed  CAS  Google Scholar 

  16. DiRenzo J, Shang Y, Phelan M, et al. BRG-1 is recruited to estrogen-responsive promoters and cooperates with factors involved in histone acetylation. Mol Cell Biol. 2000, 20: 7541–49.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Refetoff S, DeWind LT, DeGroot LJ. Familial syndrome combining deaf-mutism, stippled epiphyses, goiter and abnormally high PBI: possible target organ refractoriness to thyroid hormone. J Clin Endocrinol Metab 1967, 27: 279–94.

    Article  PubMed  CAS  Google Scholar 

  18. Refetoff S, Weiss RA, Usala SJ. The syndromes of resistance to thyroid hormone. Endocr Rev 1993, 14: 348–99.

    PubMed  CAS  Google Scholar 

  19. Brucker-Davis F, Skarulis MC, Grace MB, et al. Genetic and clinical features of 42 kindreds with resistance to thyroid hormone. The National Institutes of Health Prospective Study. Ann Intern Med 1995, 123: 572–83.

    Article  PubMed  CAS  Google Scholar 

  20. Adams M, Mathews C, Collingwood TN, Tone Y, Beck- Peccoz P, Chatterjee VK. Genetic analyses of 29 kindreds with generalized and pituitary resistance to thyroid hormone: Identification of thirteen novel mutations in the thyroid hormone receptor gB gene. J Clin Invest 1994, 904: 506–15.

    Article  Google Scholar 

  21. Beck-Peccoz P, Chatterjee VK. The variable clinical phenotype in thyroid hormone resistance syndrome. Thyroid 1994, 4: 225–32.

    Article  PubMed  CAS  Google Scholar 

  22. Weiss RE, Refetoff S. Resistance to thyroid hormone. Rev Endocr Metab Disord 2000, 1: 97–108.

    Article  PubMed  CAS  Google Scholar 

  23. Wagner RL, Apriletti JW, McGrath ME, West BL, Baxter JD, Fletterick RJ. A structural role for hormone in the thyroid hormone receptor. Nature 1995, 378: 690–7.

    Article  PubMed  CAS  Google Scholar 

  24. Yen PM, Chin WW. Molecular mechanisms of dominant negative activity by nuclear hormone receptors. Mol Endocrinol 1994, 8: 1450–4.

    PubMed  CAS  Google Scholar 

  25. Nagaya T, Madison LD, Jameson JL. Thyroid hormone receptor mutants that cause resistance to thyroid hormone: Evidence for receptor competition for DNA sequences in target genes. J Biol Chem 1992, 27: 13014–9.

    Google Scholar 

  26. Yen PM, Sugawara A, Refetoff S, Chin WW. New insights on the mechanism(s) of the dominant negative effect of mutant thyroid hormone receptor in generalized resistance to thyroid hormone. J Clin Invest 1992, 90: 1825–31.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Damm K, Thompson CC, Evans RM. Protein encoded by verbA functions as a thyroid-hormone receptor antagonist. Nature 1989, 339: 593–7.

    Article  PubMed  CAS  Google Scholar 

  28. Nagaya T, Jameson JL. Thyroid hormone receptor dimerization is required for dominant negative inhibition by mutations that cause thyroid hormone resistance. J Biol Chem 1993, 268: 15766–71.

    PubMed  CAS  Google Scholar 

  29. Hayashi Y, Weiss RE, Sarne DH, et al. Do clinical manifestations of resistance to thyroid hormone correlate with the functional alteration of the corresponding mutant thyroid hormone-gB receptors?J Clin Endocrinol Metab 1995, 80: 3246–56.

    Article  PubMed  CAS  Google Scholar 

  30. Collingwood TN, Adams N, Chatterjee VK. Spectrum of transcriptional, dimerization, and dominant negative properties of twenty different mutant thyroid hormone gB-receptors in thyroid hormone resistance syndrome. Mol Endocrinol 1994, 8: 1261–77.

    Google Scholar 

  31. Yoh SM, Chatterjee VK, Privalsky ML. Thyroid hormone resistance manifests as an aberrant interaction between mutant T3 receptors and transcriptional corepressors. Mol Endocrinol 1997, 11: 470–80.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Liu Y, Takeshita A, Misiti S, Chin WW, Yen PM. Lack of coactivator interaction can be a mechanism for dominant negative activity by mutant thyroid hormone receptors. Endocrinology 1998, 139: 4197–204.

    PubMed  CAS  Google Scholar 

  33. Collingwood TN, Wagner R, Matthews CH, et al. A role for helix 3 of the TRgB ligand-binding domain in coactivator recruitment identified by characterization of a third cluster of mutations in resistance to thyroid hormone. Embo J 1998, 17: 4760–70.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Weiss RE, Hayashi Y, Nagaya T, et al. Dominant inheritance of resistance to thyroid hormone not linked to defects in the thyroid hormone receptor a or gB genes may be due to a defective co-activator. J Clin Endocrinol and Metab 1996, 81: 4196–203.

    CAS  Google Scholar 

  35. Pohlenz J, Weiss RE, Macchia PE, et al. Five new families with resistance to thyroid hormone not caused by mutations in the thyroid hormone receptor beta gene. J Clin Endocrinol Metab 1999, 84: 3919–28.

    PubMed  CAS  Google Scholar 

  36. Parikh S, Ando S, Schneider A, Skarulis MC, Sarlis NJ, Yen PM. Resistance to thyroid hormone in a patient without thyroid hormone receptor mutations. Thyroid 2002, 12: 81–6.

    Article  PubMed  CAS  Google Scholar 

  37. Weiss RE, Xu J, Ning G, Pohlenz J, O’Malley BW, Refetoff S. Mice deficient in the steroid receptor co-activator 1 (SRC-1) are resistant to thyroid hormone. Embo J 199918: 1900–4.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Reutrakul S, Sadow PM, Pannain S, et al. Search for abnormalities of nuclear corepressors, coactivators, and a coregulator in families with resistance to thyroid hormone without mutations in thyroid hormone receptor gB or a genes. J Clin Endocrinol Metab 2000, 85: 3609–17.

    PubMed  CAS  Google Scholar 

  39. Petrij F, Giles RH, Dauwerse HG, et al. Rubinstein-Taybi syndrome caused by mutations in the transcriptional coactivator CBP [see comments]. Nature 1995, 376: 348–51.

    Article  PubMed  CAS  Google Scholar 

  40. Olson DP, Koenig RJ. Thyroid function in Rubinstein-Taybi syndrome. J Clin Endocrinol Metab 1997, 82: 3264–6.

    PubMed  CAS  Google Scholar 

  41. Ando S, Sarlis NJ, Oldfield EH, Yen PM. Somatic mutation of TRgB can cause a defect in negative regulation of TSH in a TSH-secreting pituitary tumor. J Clin Endocrinol Metab 2001, 86: 5572–6.

    PubMed  CAS  Google Scholar 

  42. Ando S, Sarlis NJ, Krishnan J, et al. Aberrant alternative splicing of thyroid hormone receptor in a TSH-secreting pituitary tumor is a mechanism for hormone resistance. Mol Endocrinol 15: 1529–38.

  43. Karl M, Von Wichert G, Kempter E, et al. Nelson’s syndrome associated with a somatic frame shift mutation in the glucocorticoid receptor gene. J Clin Endocrinol Metab 1996, 81: 124–9.

    PubMed  CAS  Google Scholar 

  44. McCabe CJ, Gittoes NJ, Sheppard MC, Franklyn JA. Thyroid receptor a1 and a2 mutations in nonfunctioning pituitary tumors. J Clin Endocrinol Metab 1999, 84: 649–53.

    PubMed  CAS  Google Scholar 

  45. Gittoes NJ, McCabe CJ, Verhaeg J, Sheppard MC, Franklyn JA. An abnormality of thyroid hormone receptor expression may explain abnormal thyrotropin production in thyrotropin-secreting pituitary tumors. Thyroid 1998, 8: 9–14.

    Article  PubMed  CAS  Google Scholar 

  46. Gurnell M, Rajanayagam O, Barbar I, JonesMK, Chatterjee VK. Reversible pituitary enlargement in the syndrome of resistance to thyroid hormone. Thyroid 1998, 8: 679–82.

    Article  PubMed  CAS  Google Scholar 

  47. Barlow C, Meister B, Lardelli M, Lendahl U, Vennstrom B. Thyroid abnormalities and hepatocellular carcinoma in mice transgenic for v-erbA. Embo J 1994, 13: 4241–50.

    PubMed Central  PubMed  CAS  Google Scholar 

  48. Lin KH, Zhu XG, Shieh HY, et al. Identification of naturally occurring dominant negative mutants of thyroid hormone a1 and gB1 receptors in a human hepatocellular carcinoma cell lines. Endocrinology 1996, 137: 4073–81.

    PubMed  CAS  Google Scholar 

  49. Lin KH, Zhu XG, Hsu HC, et al. Dominant negative activity of mutant thyroid hormone a1 receptors from patients with hepatocellular carcinoma. Endocrinology 1997, 138: 5308–15.

    PubMed  CAS  Google Scholar 

  50. Lin KH, Shieh HY, Chen SL, Hsu HC. Expression of mutant thyroid hormone nuclear receptors in human hepatocellular carcinoma cells. Mol Carcinog 1999, 1: 53–61.

    Article  Google Scholar 

  51. Puzianowska-Kuznicka M, Krystyniak A, Madej A, Cheng SY, Nauman J. Functionally impaired TR mutants are present in thyroid papillary cancer. J Clin Endocrinol Metab 2002, 87: 1120–8.

    Article  PubMed  CAS  Google Scholar 

  52. Kamiya Y, Puzianowska-Kuznicka M, McPhie P, Nauman J, Cheng SY, Nauman A. Expression of mutant thyroid hormone nuclear receptors is associated with human renal clear cell carcinoma. Carcinogenesis 2002, 23: 25–33.

    Article  PubMed  CAS  Google Scholar 

  53. Suzuki H, Willingham MC, Cheng SY. Mice with a mutation in the thyroid hormone receptor gB gene spontaneously develop thyroid carcinoma: a mouse model of thyroid carcinogenesis. Thyroid 2002, 12: 963–9.

    Article  PubMed  CAS  Google Scholar 

  54. Taplin ME, Bubley GJ, Shuster TD, et al. Mutation of the androgen- receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med 1995, 332: 1393–8.

    Article  PubMed  CAS  Google Scholar 

  55. Zhang QX, Hilsenbeck SG, Fuqua SA, Borg A. Multiple splicing variants of the estrogen receptor are present in individual human breast tumors. J Steroid Biochem Mol Biol 1996, 59: 251–60.

    Article  PubMed  CAS  Google Scholar 

  56. Fuqua SA, Wiltschke C, Zhang QX, et al. A hypersensitive estrogen receptor-a mutation in premalignant breast lesions. Cancer Res 2000, 60: 4026–9.

    PubMed  CAS  Google Scholar 

  57. Hu C, Hyder SM, Needleman DS, Baker VV. Expression of estrogen receptor variants in normal and neoplastic human uterus. Mol Cell Endocrinol 1996, 118: 173–9.

    Article  PubMed  CAS  Google Scholar 

  58. Anderson TI, Wooster R, Laake K, et al. Screening for ESR mutations in breast and ovarian cancer patients. Hum Mutat 1997, 9: 531–6.

    Article  PubMed  CAS  Google Scholar 

  59. Sarraf P, Mueller E, Smith WM, et al. Loss-of-function mutations in PPAR ? associated with human colon cancer. Mol Cell 1999, 3: 799–804.

    Article  PubMed  CAS  Google Scholar 

  60. Hillmann AG, Ramdas J, Multanen K, Norman MR, Harmon JM. Glucocorticoid receptor gene mutations in leukemic cells acquired in vitro and in vivo. Cancer Res. 2000, 60: 2056–62.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Yen MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yen, P.M., Cheng, S.Y. Germline and somatic thyroid hormone receptor mutations in man. J Endocrinol Invest 26, 780–787 (2003). https://doi.org/10.1007/BF03347365

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03347365

Key-words

Navigation