Skip to main content
Log in

The influence of dexamethasone treatment of pregnant rats on the development of chromaffin tissue in their offspring during the fetal and neonatal period

  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

The aim of these examinations was to determine the influence of dexamethasone (Dx)-treatment of gravid females, on day 16 of gestation on the development of medullary chromaffin tissue of their fetuses and neonatal offspring. In conducting these investigations we used stereo-logical as well as spectrofluorimetric measurements, in 20-day-old fetuses and 1 -, 3-, 5-, 7-, 9-, 11-, 13- and 14-day-old neonatal rats. Single Dx-treatment (1.5 mg/kg bw) of the dams led to a significant decrease in body and adrenal weight of their fetuses and neonatal offspring, and also reduction of the medullary volume and the number of chromaffin cells during the entire period examined as a result of decreased cell proliferation in the fetal and early neonatal period (till the 5th day of age). The proliferative activity of the chromaffin cells was evaluated through the mitotic index after applying the cytostatic vincristine-sulphate. During the second neonatal week the mitotic index showed significantly higher values in comparison with the corresponding controls, which indicates that there is regeneration and recovery of the adrenal gland medulla. Adrenaline content in the adrenal gland tissue of offspring of Dx-treated dams was significantly reduced only on the 1st neonatal day. Thus, the change in blood glucocorticoid level of pregnant females after a single Dx injection during the period critical for development of the hypothalamo-pituitary-adrenal system in fetuses affects the development and kinetics of medullar chromaffin cell division.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hinson J.P. Paracrine control of adrenocortical function: a new role for the medulla? J. Endocrinol. 124: 7, 1990.

    Article  PubMed  CAS  Google Scholar 

  2. Einer-Jensen N., Carter A.M. Local transfer of hormones between blood vessels within the adrenal gland may explain the functional interaction between the adrenal cortex and medulla. Med. Hypotheses 44: 471, 1995.

    Article  PubMed  CAS  Google Scholar 

  3. Seidl K., Unsicker K. The determination of the adrenal medullary cell fate during embryogenesis. Dev. Biol. 136: 481, 1989.

    Article  PubMed  CAS  Google Scholar 

  4. Michelsohn A.M., Anderson D.J. Changes in competence determine the timing of two sequential glucocorticoid effects on sympathoadrenal progenitors. Neuron 8: 589, 1992.

    Article  PubMed  CAS  Google Scholar 

  5. Unsicker K., Krisch B., Otten U., Thoenen H. Nerve growth factor-induced fiber outgrowth from isolated rat adrenal chromaffin cells: Impairment by glucocorticoids. Proc. Natl. Acad. Sci. USA 75: 3498, 1978.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Aloe L., Levi-Montalcini R. Nerve growth factor-induced transformation of immature chromaffin cells in vivo into sympathetic neurons: Effect of antiserum to nerve growth factor. Proc. Natl. Acad. Sci. USA 76: 1246, 1979.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Kent C., Parker G. Effects of ACTH and aminoglutethimide on the catecholamine content and chromaffin cell morphology of the adrenal medulla of the neonatal rat. J. Anat. 183: 601, 1993.

    PubMed Central  PubMed  CAS  Google Scholar 

  8. Barnes R.J., Comune R.S., Silver M. The effects of bilateral adrenalectomy or hypophysectomy of the foetal lamb in utero. J. Physiol. 264: 429, 1977.

    PubMed Central  PubMed  CAS  Google Scholar 

  9. Betito K., Diorio J., Meaney M.J., Boksa P. Glucocorticoid receptors in bovine adrenal medullary cells in culture: Regulation by cyclic nucleotides. Neuroscience 54: 263, 1993.

    Article  PubMed  CAS  Google Scholar 

  10. Hay W.W. Current Topic: Metabolic interrelationships of placenta and fetus. Placenta 16: 19, 1995.

    Article  PubMed  Google Scholar 

  11. Zarrow M.X., Philpott J.E., Denenberg V.H. Passage of 14C-corticosterone from rat mother to the fetus and neonate. Nature 226: 1058, 1970.

    Article  PubMed  CAS  Google Scholar 

  12. Kittinger G.W. Feto-maternal production and transfer of Cortisol in the rhesus (Macaca mulatta). Steroids 23: 229, 1974.

    Article  PubMed  CAS  Google Scholar 

  13. Nussdorfer G.G. Cytophysiology of the adrenal cortex. Int. Rev. Cytol. 98: 1, 1986.

    Article  PubMed  CAS  Google Scholar 

  14. Hristić M., Kalafatić D., Plećaš B., Jovanović V. The effect of dexamethasone on the adrenal gland in fetal and neonatal rats. J. Exp. Zool. 272: 281, 1995.

    Article  PubMed  Google Scholar 

  15. Pepe G J., Davies W.A., Albrecht E.D. Activation of the baboon fetal pituitary-adrenocortical axis at midgestation by estrogen: Enhancement of fetal pituitary proopiomelanocortin messenger ribonucleic acid expression. Endocrinology 135: 2581, 1994.

    PubMed  CAS  Google Scholar 

  16. De Kloet E.R. Brain corticosteroid receptor balance and homeostatic control. Front. Neuroendocrinol. 12: 95, 1991.

    Google Scholar 

  17. Kovacs K.J., Mezey E. Dexamethasone inhibits corticotropin-releasing-factor gene expression in the rat paraventricular nucleus. Neuroendocrinology 46: 365, 1987.

    Article  PubMed  CAS  Google Scholar 

  18. Jingami H., Matsukura S., Numa S., Imura H. Effect of adrenalectomy and dexamethasone administration on the level of prepro-corticotropin-releasing factor messenger ribonucleic acid (mRNA) in the hypothalamus and adrenocorticotropin precursor mRNA in the pituitary in rats. Endocrinology 117: 1314, 1985.

    Article  PubMed  CAS  Google Scholar 

  19. Weibel E.R. Stereological methods. Practical methods for biological morphometry. Vol 1. Academic Press, New York, 1979.

    Google Scholar 

  20. Laverty R., Taylor M.K. The fluorimetric assay of catecholamines and related compounds: improvements and extension to the hydroxy indol technique. Anal. Biochem. 22: 269, 1968.

    Article  PubMed  CAS  Google Scholar 

  21. Rotenberg M., Gewolb I.H. Reversal of lung maturational delay in the fetus of the diabetic rat using triiodothyronine or dexamethasone. Biol. Neonate 64: 318, 1993.

    Article  PubMed  CAS  Google Scholar 

  22. Slotkin T.A., Lappi S.E., McCook E.C., Tayyeb M.I., Eylers J.P., Seidler F.J. Glucocorticoids and the development of neuronal function: Effects of prenatal dexamethasone exposure on central noradrenergic activity. Biol. Neonate 61: 326, 1992.

    Article  PubMed  CAS  Google Scholar 

  23. Wehrenberg W.B., Bergmann P.J., Stagg L., Ndon J., Giustina A. Glucocorticoid inhibition of growth in rats: Partial reversal with somatostatin antibodies. Endocrinology 127: 2705, 1990.

    Article  PubMed  CAS  Google Scholar 

  24. Slotkin T.A., Lappi S.E., Tayyeb M.I., Seidler F.J. Dose-dependent glucocorticoid effects on noradrenergic synaptogenesis in rat brain: Ontogeny of [3H] desmethylimipramine binding sites after fetal exposure to dexamethasone. Res. Commun. Chem. Pathol. Pharmacol. 73: 3, 1991.

    PubMed  CAS  Google Scholar 

  25. Teitelman G., Baker H., Joh T.H., Reis D.J. Appearance of catecholamine-synthesizing enzymes during development of rat sympathetic nervous system: Possible role of tissue environment. Proc. Natl. Acad. Sci. USA 76: 509, 1979.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Landsberg L., Young J.B. Catecholamines and the adrenal medulla. In: Wilson J. D., Foster D. W. (Eds.), Williams textbook of endocrinology. W. B. Saunders Company, 1992, p. 621.

  27. Lau C., Franklin M., McCarthy L., Pylypiw A., Ross L.L. Thyroid hormone control of preganglionic innervation of the adrenal medulla and chromaffin cell development in the rat. An ultrastructural, morphometric and biochemical evaluation. Dev. Brain Res. 44: 109, 1988.

    Article  CAS  Google Scholar 

  28. Tischler A.S., Ruzicka L.A., Donahue S.R., DeLellis R.A. Chromaffin cell proliferation in the adult rat adrenal medulla. Int. J. Dev. Neurosci. 7; 439, 1989.

    Article  PubMed  CAS  Google Scholar 

  29. Verhofstad A.A.J. Kinetics of adrenal medullary cells. J. Anat. 183: 315, 1993.

    PubMed Central  PubMed  Google Scholar 

  30. Coupland R.E., Tomlinson A. The development and maturation of adrenal medullary chromaffin cells of the rat in vivo: A descriptive and quantitative study. Int. J. Dev. Neurosci. 7: 419, 1989.

    Article  PubMed  CAS  Google Scholar 

  31. Piezzi R.S., Miranda J.C. Effect of dexamethasone on the neonatal adrenal medulla. Cell Tissue Res. 220: 213, 1981.

    Article  PubMed  CAS  Google Scholar 

  32. Daikoku S., Okamura Y., Kawano H., Tsuruo Y., Maegawa M., Shibasaki T. Immunohistochemical study on the development of CRF-containing neurons in the hypothalamus of the rat. Cell Tissue Res. 238: 539, 1984.

    Article  PubMed  CAS  Google Scholar 

  33. Dupouy J.P., Magre S. Ultrastructure des cellules granulèes de l’hypophyse foetale du rat. Identification des cellules corticotropes et thyrèotropes. Arch. Anat. Micr. Morph. Exp. 62: 185, 1973.

    PubMed  CAS  Google Scholar 

  34. Sétalo G., Nakane P.K. Functional differentiation of the fetal anterior pituitary cells in the rat. Endocrinol. Exp. 10: 155, 1976.

    PubMed  Google Scholar 

  35. Cohen A. Plasma corticosterone concentration in the fetal rat. Horm. Metab. Res. 5: 66, 1973.

    PubMed  CAS  Google Scholar 

  36. Boudouresque F., Guillaume V., Grino M., Strbak V., Chautard T., Conte-Devoix B., Oliver C. Maturation of the pituitary-adrenal function in rat fetuses. Neuroendocrinology 48: 417, 1988.

    Article  PubMed  CAS  Google Scholar 

  37. Nussdorfer G.G., Mazzocchi G., Robba C., Belloni A.S., Rebuffat P. Effect of ACTH and dexamethasone on the zona glomerulosa of the rat adrenal cortex: An ultrastructural stereologic study. Acta Endocrinol. (Copenh.) 85: 608, 1977.

    CAS  Google Scholar 

  38. Lesniewska B., Nowak K.W., Malendowicz L.K. Dexamethasone-induced adrenal cortex atrophy and recovery of the gland from partial, steroid induced atrophy. Exp. Clin. Endocrinol. 100: 133, 1992.

    Article  PubMed  CAS  Google Scholar 

  39. Moftaquir-Handaj A., Barbé F., Barbarino-Monnier P., Aunis D., Boutroy M.J. Circulating chromogranin A and catecholamines in human fetuses at uneventful birth. Pediatr. Res. 37: 101, 1995.

    Article  PubMed  CAS  Google Scholar 

  40. Holgert H., Pequignot J.M., Lagercrantz H., Hökfelt T. Birth-related up-regulation of mRNA encoding thyrosine hydroxylase, dopamine β-hydroxylase, neuropeptide tyrosine, and prepro-enkephalin in rat adrenal medulla is dependent on postnatal oxygenation. Pediatr. Res. 37: 701, 1995.

    Article  PubMed  CAS  Google Scholar 

  41. Grant N.J., König F., Aunis D., Langley K. Expression of GAP-43 (neuromodulin), during the development of the adrenal gland. Dev. Brain Res. 82: 265, 1994.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manojlivić, M., Hristić, M., Kalafatić, D. et al. The influence of dexamethasone treatment of pregnant rats on the development of chromaffin tissue in their offspring during the fetal and neonatal period. J Endocrinol Invest 21, 211–218 (1998). https://doi.org/10.1007/BF03347305

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03347305

Key-words

Navigation