Skip to main content
Log in

Bone turnover is reduced in children with juvenile rheumatoid arthritis

  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Juvenile Rheumatoid Arthritis (JRA) is frequently associated with osteoporosis. In order to determine if JRA osteoporosis is related to reduced formation or to increased bone resorption or both, serum levels of calcium (Ca), phosphorus (PO4), magnesium (Mg), alkaline phosphatase (ALP), parathormone (PTHi), 25-hydroxyvitamin D3 (25-OHD) and 1,25-dihydroxy-vitamin D3 (1,25-(OH)2D), osteocalcin (OT), carboxyterminal propeptide (P-coll-1-c), and carboxyterminal telopeptide of type I collagen (ICTP) were evaluated in 47 JRA children, 33 with active disease and 14 in remission. The therapy consisted of nonsteroidal antiinflammatory (NSAIDs) drugs in pauciarticular subset, NSAIDs and Metothrexate (MTX) in polyarticular, NSAIDs and steroids in systemic onset. OT reflects bone formation, P-coll-1-c reflects collagen production and bone formation, ICTP, marker of collagen degradation in bone, indicates bone destruction. Serum levels of Ca, PO4, Mg, ALP, PTHi 25-OHD and 1,25-(OH)2D were comparable in JRA children and in controls. OT (8.7±3.7 ng/ml vs 9.6±5.1), P-coll-1-c (301.2±118.4 ng/ml vs 264.1±100.1) and ICTP (15.7±5.7 ng/ml vs 16.1±6.1) did not differ statistically in the whole group of JRA children vs controls. OT (8.0±3.5 vs 10.4±3.8) and ICTP (14.4±5.4 vs 18.8±5.4) were significantly lower in active than inactive group. In polyarticular and systemic onset OT and ICTP were significantly lower than in pauciarticular. No difference was found in active patients treated with steroids vs active patients treated with NSAIDS and NSAIDs plus MTX. The lower serum levels of OT and ICTP in active disease support the hypothesis that both bone formation and resorption are reduced in JRA bone turnover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hopp R., Degan J.A., Gallagher J.C., Cassidy J.T. Estimation of bone mineral density in children with juvenile rheumatoid arthritis. J. Rheumatol. 18: 1235, 1991.

    PubMed  CAS  Google Scholar 

  2. Cassidy J.T., Petty R.E. Juvenile rheumatoid arthritis. In: Cassidy J.T., Petty R.E. (Eds.), Textbook of pediatric rheumatology. Churchill Livingstone, New York, 1990, p. 113.

    Google Scholar 

  3. Elsasser U., Wilkins B., Hesp R., Thurnham D.I., Reeve J., Ansell B.M. Bone rarefaction and crush fractures in juvenile chronic arthritis. Arch. Dis. Child. 57: 377, 1982.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Brewer E.J. Jr., Giannini E.H. Standard methodology for segment I, II and III pediatric rheumatology collaborative study group studies. I. Design. J. Rheumatol. 9: 109, 1982.

    Google Scholar 

  5. Giannini E.H., Brewer E.J. Jr. Standard methodology for segment I, II and III pediatric rheumatology collaborative study group studies. II. Analysis and presentation of data. J. Rheumatol. 9: 1144, 1982.

    Google Scholar 

  6. Mundy G.R. Immune system and bone remodelling. Trends Endocrinol. Metab. 1: 307, 1990.

    Article  PubMed  CAS  Google Scholar 

  7. Bouxsein M.L., Marcus R. Overview of exercise and bone mass. Clin. North Am. 20: 787, 1994.

    CAS  Google Scholar 

  8. Bacon M.C., White P.H., Raiten D.J. Nutritional status and growth in juvenile rheumatoid arthritis? Semin. Arthrithis Rheum. 20: 97, 1990.

    Article  CAS  Google Scholar 

  9. Suskind D., Murthy K.K., Suskind R.M. The malnourished child: an over review. Nestlé Nutrition Workshop Series. Nestec, Ltd. Raven Press, New York, 19: 1, 1990.

    Google Scholar 

  10. Joffe I., Epstein S. Osteoporosis associated with rheumatoid arthritis: pathogenesis and management. Semin. Arthritis Rheum. 20: 256, 1991.

    Article  PubMed  CAS  Google Scholar 

  11. Als O.S., Gotfredsen A., Christiansen C. The effect of glucocorticoids on bone mass in rheumatoid arthritis patients. Arthritis Rheum. 28: 369, 1985.

    Article  PubMed  CAS  Google Scholar 

  12. Reed A., Haughen M., Pachman L.M., Langman C.B. Abnormalities in serum osteocalcin values in children with chronic rheumatic diseases. J. Pediatr. 116: 574, 1990.

    Article  PubMed  CAS  Google Scholar 

  13. Bianchi M.L., Bardare M., Caraceni M.P., Cohen E., Falvella S., Borzani M., De Gaspari M.G. Bone metabolism in juvenile rheumatoid arthritis. Bone Miner. 9: 153, 1990.

    Article  PubMed  CAS  Google Scholar 

  14. Reed A., Haughen M., Pachman LM., Langman CB. 25-hydroxyvitamin D therapy in children with active juvenile rheumatoid arthritis: short-term effects on serum osteocalcin levels and bone mineral density. J. Pediatr. 119: 657, 1991.

    Article  PubMed  CAS  Google Scholar 

  15. Reed A., Haugen M., Pachman L., Langman C. Repair of osteopenia in children with juvenile rheumatoid arthritis. J. Pediatr. 122: 693, 1993.

    Article  PubMed  CAS  Google Scholar 

  16. Hillman L., Cassidy J.T., Johnson L., Lee D., Allen S.H. Vitamin D metabolism and bone mineralization in children with juvenile rheumatoid arthritis. J. Pediatr. 124: 9104, 1994.

    Article  Google Scholar 

  17. Pepmueller P.H., Cassidy J.T., Allen S.H., and Hillman L.S. Bone mineralization and bone mineral metabolism in children with juvenile rheumatoid athritis. Arthritis Rheum. 39: 746, 1996.

    Article  PubMed  CAS  Google Scholar 

  18. Cecchettin M., Tarquini B., Manente P., Conte N., Albertini A. Serum osteocalcin assay and its clinical application. In: Cecchettin M., Segre G. (Eds.), Calciotropic hormones and calcium metabolism. Excerpta Medica, Amsterdam, 1986, p 7.

    Google Scholar 

  19. Risteli J., Melkko J., Niemi S., Risteli L. Use of a marker of collagen formation in osteoporosis studies. Calcif. Tissue Int. 49 (Suppl.): 24, 1991.

    Article  Google Scholar 

  20. Risteli J., Niemi S., Elomaa I., Risteli L. Bone resorption assay based on a peptide liberated during type I collagen degradation. J. Bone Miner Res. 6(Suppl 1): S251, 1991.

    Google Scholar 

  21. EULAR standing Committee on Pediatric Rheumatology. Moscow, June 22, 1983.

  22. Nishimoto S.K., Price P.A. Proof that the γ-carboxyglutamic acid-containing bone protein is synthesized in calf bone. J. Biol. Chem. 254: 437, 1979.

    PubMed  CAS  Google Scholar 

  23. Hauschka P.V., Frenkel J., De Muth R., Gundberg C.M. Presence of osteocalcin and related higher molecular weight γ-carboxyglutamic acid-containing proteins in developing bone. J. Biol. Chem. 258: 176, 1983.

    PubMed  CAS  Google Scholar 

  24. Carmel R., Lau K.H.W., Baylink D.J., Saxena S., Singer F.R. Cobalamin and osteoblast-specific proteins. N. Engl. J. Med. 319: 70, 1988.

    Article  PubMed  CAS  Google Scholar 

  25. Falcini F., Trapani S., Civinini R., Capone A., Ermini M., Bartolozzi G. The primary role of steroids on the osteoporosis in juvenile rheumatoid arthritis patients evaluated by dual energy X-ray absorptiometry. J. Endocrinol. Invest. 19: 165, 1996.

    Article  PubMed  CAS  Google Scholar 

  26. Luckert B.P., Higgins J.C., Stoskops M.M. Serum osteocalcin is increased in patients with hyperthyroidism and decreased in patients receiving glucocorticoids. J. Clin. Endocrinol. Metab. 62: 1056, 1986.

    Article  Google Scholar 

  27. Sambrook P.N., Eisman J.A., Champion G.D., Yeates M.G., Pocock N.A., Eberl S. Determinants of axial bone loss in rheumatoid arthritis. Arthritis Rheum. 30: 721, 1987.

    Article  PubMed  CAS  Google Scholar 

  28. Barden H.S., Mazess R.B. Bone densitometry in infants. J. Pediatr. 113: 172, 1988.

    Article  PubMed  CAS  Google Scholar 

  29. Pettipher E.R., Henderson B., Edwards J.C., Higgs G.A. Effect of indomethacin on swelling, lymphocyte influx, and cartilage proteoglycan depletion in experimental arthritis. Ann. Rheum Dis. 48: 623, 1989.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Kikuchi K., Ihn H., Sato S., Igarashi A., Soma Y., Ishibashi Y., Takehara K. Serum concentration of procollagen type I carboxyterminal propeptide in systemic sclerosis. Arch. Dermatol. Res. 286: 77, 1994.

    Article  PubMed  CAS  Google Scholar 

  31. Risteli J., Elomaa I., Niemi S., Novamo A., Risteli L. Radioimmunoassay for the Pyridinoline Cross Linked Carboxy-Terminal Telopeptide of Type 1 Collagen; A new serum marker of bone collagen degradation. Clin. Chem. 39: 635, 1993.

    PubMed  CAS  Google Scholar 

  32. Eriksen E.F., Charles P., Meisen F., Mosekilde L., Risteli L., Risteli J. Serum markers of type 1 collagen formation and degradation in metabolic bone disease: correlation with bone histomorphometry. Bone Miner. Res. 8: 127, 1993.

    Article  CAS  Google Scholar 

  33. Lepore L., Pennesi M., Longo F., Lucchesi A. Serum cytokines levels in polyarticular and in systemic juvenile chronic arthritis. Clin. Exp. Rheumatol. 1: S–9, 1993.

    Google Scholar 

  34. May K.P., West S.G., McDermott M.T., Huffer W.E. The effect of low dose methotrexate on bone metabolism and histomorphometry in rats. Arthritis Rheum. 37: 201, 1994.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falcini, F., Ermini, M. & Bagnoli, F. Bone turnover is reduced in children with juvenile rheumatoid arthritis. J Endocrinol Invest 21, 31–36 (1998). https://doi.org/10.1007/BF03347283

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03347283

Key-words

Navigation