Skip to main content
Log in

A naturally occurring deletion in the SRY promoter region affecting the Sp1 binding site is associated with sex reversal

  • Case Report
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Male to female sex reversal results from failure of testis development. Mutations in the SRY gene or in other genes involved in the sexual differentiation pathway are considered to cause XY gonadal dysgenesis. The majority of the mutations in the SRY described so far are located within the SRY coding region, mainly in the HMG-box conserved domain. Comparison of 5′ flanking SRY gene sequences among different species indicated the presence of several putative conserved consensus sequences for different transcription regulators. In this study, we investigated a 360 bp sequence encompassing the SRY putative core promoter, in 17 patients with variable degrees of 46,XY sex reversal, which have been previously shown not to bear mutations in the SRY coding region. Sequencing analysis of the SRY promoter in one patient with complete XY gonadal dysgenesis revealed a three base pair deletion in one of the Sp1 binding sites. The deletion abolished Sp1 binding in vitro. This is the first report on a naturally occurring mutation affecting the Sp1 regulatory element in the SRY promoter region, which is associated with sex reversal. Additionally, upon familial investigation the father, who had 18 genital surgeries due to severe hypospadia without cryptorchidism, was found to bear the same deletion and several relatives were referred to have sexual ambiguity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson GM, Freytag SO. Synergistic activation of a human promoter in vivo by transcription factor Sp 1. Mol Cell Biol 1911, 11: 1935–43.

    Google Scholar 

  2. Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R. Male development of chromosomally female mice transgenic for Sry. Nature 1991, 351: 117–21.

    Article  CAS  PubMed  Google Scholar 

  3. Behlke MA, Bogan JS, Beer-Romero P, Page DC. Evidence that the SRY protein is encoded by a single exon on the human Y chromosome. Genomics 1993, 17: 736–9.

    Article  CAS  PubMed  Google Scholar 

  4. Sinclair AH, Berta P, Palmer M S, et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 1990, 346: 240–4.

    Article  CAS  PubMed  Google Scholar 

  5. Giese K, Pagel J, Grosschedl R. Distinct DNA-binding properties of the high mobility group domain of murine and human SRY sex-determining factors. Proc Natl Acad Sci USA 1994, 91: 3368–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Harley VR, Lovell-Badge R, Goodfellow PN. Definition of a consensus DNA binding site for SRY. Nucleic Acids Res 1994, 22: 1500–1.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Pontiggia A, Whitfield S, Goodfellow PN, Lovell-Badge R, Bianchi ME. Evolutionary conservation in the DNA-binding and -bending properties of HMG-boxes from SRY proteins of primates. Gene 1995, 154: 277–80.

    Article  CAS  PubMed  Google Scholar 

  8. Cameron FJ, Sinclair AH. Mutations in SRY and SOX9, testisdetermining genes. Hum Mutat 1997, 9: 388–95.

    Article  CAS  PubMed  Google Scholar 

  9. Hawkins JR. Genetics of XY sex reversal. J Endocrinol 1995, 147: 183–7.

    Article  CAS  PubMed  Google Scholar 

  10. Assumpção JG, Benedetti CE, Maciel-Guerra AT, Guerra Jr G, Scolfaro R, de Mello MP. Novel mutations affecting SRY DNA-binding activity: the HMG box N65H associated with 46, XY pure gonadal dysgenesis and the familial non-HMG box R30I associated with variable phenotypes. J Mol Med 2002, 80: 782–90.

    Article  PubMed  CAS  Google Scholar 

  11. Hawkins JR, Taylor A, Goodfellow PN, Migeon CJ, Smith D, Berkovitz GD. Evidence for increased prevalence of SRY mutations in XY females with complete rather than partial gonadal dysgenesis. Am J Hum Genet 1992, 51: 979–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Uehara S, Hashiyada M, Sato K, Nata M, Funato T, Okamura K. Complete XY gonadal dysgenesis and aspects of the SRY genotype and gonadal tumor formation. J Hum Genet 2002, 47: 279–84.

    Article  CAS  PubMed  Google Scholar 

  13. McElreavey K, Vilain E, Abbas N, et al. XY sex reversal associated with a deletion ′ to the SRY “HMG box” in the testis-determining region. Proc Natl Acad Sci USA 1992, 89: 11016–20.

    Article  Google Scholar 

  14. Kwok C, Tyler-Smith C, Mendonca B, et al. Mutation analysis of the 2 kb ′ to SRY in XY females and XY intersex subjects. J Med Genet 1996, 33: 465–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Poulat F, Desclozeaux M, Tuffery S, Jay P, Boizet B, Berta P. Mutation in the ′ noncoding region of the SRY gene in an XY sex-reversed patient. Hum Mutat 1998, (Suppl 1): S192–4.

  16. Veitia RA, Fellous M, McElreavey K. Conservation of Y chromosome-specific sequences immediately ′ to the testis determining gene in primates. Gene 1997, 199: 63–70.

    Article  CAS  PubMed  Google Scholar 

  17. Margarit E, Guillén A, Rebordosa C, et al. Identification of conserved potentially regulatory sequences of the SRY gene from 10 different species of mammals. Biochem Biophys Res Commun 1998, 245: 370–7.

    Article  CAS  PubMed  Google Scholar 

  18. Desclozeaux M, Poulat F, De Santa-Barbara P, et al. Characterization of two Sp1 binding sites of the human sex determining SRY promoter. Biochim Biophys Acta 1998, 1397: 247–52.

    Article  CAS  PubMed  Google Scholar 

  19. Shimamura R, Fraizer GC, Trapman J, Lau Y-FC, Saunders GF. The Wilms’ tumor gene WT1 can regulate genes involved in sex determination and differentiation, SRY, Mullerian-inhibiting substance, and the androgen receptor. Clin Cancer Res 1997, 3: 2571–80.

    CAS  PubMed  Google Scholar 

  20. Hossain A, Saunders GF. The human sex-determining gene SRY is a direct target of WT1. J Biol Chem 2001, 276: 16817–23. Epub 2001.

    Article  CAS  PubMed  Google Scholar 

  21. De Santa Barbara P, Méjean C, Moniot B, Malclès MH, Berta P, Boizet-Bonhoure B. Steroidogenic factor-1 contributes to the cyclic-adenosine monophosphate down-regulation of human SRY gene expression. Biol Reprod 2001, 64: 775–83.

    Article  PubMed  Google Scholar 

  22. Clepet C, Schafer AJ, Sinclair AH, Palmer MS, Lovell-Badge R, Goodfellow PN. The human SRY transcript. Hum Mol Genet 1993, 2: 2007–12.

    Article  CAS  PubMed  Google Scholar 

  23. Su H, Lau Y-FC. Identification of the transcriptional unit, structural organization, and promoter sequence of the human sex-determining region Y (SRY) gene, using a reverse genetic approach. Am J Hum Genet 1993, 52 24–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Vilain E, Fellous M, McElreavey K. Characterization and sequence of the ′flanking region of the human testis-determining factor SRY. Methods Mol Cell Biol 1992, 3: 128–34.

    CAS  Google Scholar 

  25. Berkovitz GD, Fechner MD, Zacur HW, et al. Clinical and pathologic spectrum of 46,XY gonadal dysgenesis, its relevance to the understanding of sex differentiation. Medicine (Baltimore) 1991, 10: 375–83.

    Google Scholar 

  26. Marcantonio SM, Fechner PY, Migeon CJ, Perlman EJ, Berkovitz GD. Embryonic testicular regression sequence, a part of the clinical spectrum of 46,XY gonadal dysgenesis. Am J Med Genet 1994, 49: 1–5.

    Article  CAS  PubMed  Google Scholar 

  27. Scolfaro MR, Cardinalli IA, Stuchi-Perez EG, et al. Morphometry and histology of gonads from 13 children with dysgenetic male pseudohermaphroditism. Arch Pathol Lab Med 2001, 125: 652–6.

    Google Scholar 

  28. Guerra G Jr, de Mello MP, Assumpção JG, et al. True hermaphrodites in the southeastern region of Brazil, a different cytogenetic and gonadal profile. J Pediatr Endocrinol Metab 1998, 11: 519–24.

    Article  Google Scholar 

  29. Sambrook J, Fristsch EF, Maniatis TE. Molecular cloning, a laboratory manual. New York: Cold Spring Harbor. 1989.

    Google Scholar 

  30. Schmitt-Ney M, Thiele H, Kalwaber P, Bardoni B, Cisternino M, Scherer G. Two novel SRY missense mutations reducing DNA binding identified in XY females and their mosaic fathers. Am J Hum Genet 1995, 56: 862–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Hawkins JR, Taylor A, Berta P, Levilliers J, Van der Auwera B, Goodfellow PN. Mutational analysis of SRY, nonsense and missense mutations in XY sex reversal. Hum Genet 1992, 88: 471–4.

    Article  CAS  PubMed  Google Scholar 

  32. Dynan WS, Tjian R. Control of eukaryotic messenger RNA synthesis by sequence-specific DNA-binding proteins. Nature 1985, 316: 774–8.

    Article  CAS  PubMed  Google Scholar 

  33. Kadonaga JT, Jones KA, Tjian R. Promoter-specific activation of RNA polymerase II transcription by Sp 1. Trends Biochem Sci 1986, 11: 20–3.

    Article  CAS  Google Scholar 

  34. Perkins ND, Edwards NL, Duckett CS, Agranoff AB, Schmid RM, Nabel GJ. A cooperative interaction between NF-kappa B and Sp1 is required for HIV-1 enhancer activation. EMBO J 1993, 12: 3551–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Ukiyama E, Jancso-Radek A, Li B, et al. SRY and architectural gene regulation, the kinetic stability of a bent protein-DNA complex can regulate its transcriptional potency. Mol Endocrinol 2001, 15: 363–77.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. de Mello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Assumpção, J.G., Ferraz, L.F.C., Benedetti, C.E. et al. A naturally occurring deletion in the SRY promoter region affecting the Sp1 binding site is associated with sex reversal. J Endocrinol Invest 28, 651–656 (2005). https://doi.org/10.1007/BF03347266

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03347266

Key-words

Navigation