Skip to main content
Log in

Alteration in the transmission of TSH-message to thyroid target in a transplantable rat thyroid tumor

  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Plasma membranes derived from a transplantable rat thyroid tumor (line 1–5G in Wollman’s classification), which is unresponsive to thyrotropin (TSH) but is responsive to dibutyryl 3′, 5′ cAMP, have been evaluated to localize the defect. TSH binding in tumor plasma membrane is slightly lower than in normal rat thyroid membranes. No change in affinity, but simply a lower capacity was observed. The glycoprotein component of the TSH receptor exhibits similar binding and solubilization properties to the glycoprotein component derived from normal rat thyroid. Analogously to normal rat thyroid membranes, gangliosides more complex than N-acetylneuraminylgalactosylglucosyl-ceramide (GM3) are also present in tumor line 1–5G membranes. Phospholipid content of tumor line 1–5G is 50% lower than that of normal rat thyroid. At variance also with normal rat thyroid, 32P incorporation in tumor line 1–5G phospholipids such as phosphatidylserine and phosphatidylethanolamine is not modified after in vitro incubation with TSH. An even more pronounced effect by TSH on 32P incorporation into phosphatidylinositol is evident in tumor line 1–5G by comparison to normal. The 1–5G thyroid tumor membranes has a 12-fold higher basal adenylate cyclase activity than that of rat thyroid membranes. The high basal adenylate cyclase activity is associated with high ADP ribosylation activity. Both enzymes of tumor are only slightly responsive to TSH. These results suggest that the block in the transmission of TSH message to the cell machinery is localized to the regulatory domains between TSH receptor and adenylate cyclase catalytic subunit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pastan I., Macchia V. Mechanism of thyroid-stimulating hormone action. J. Biol. Chem. 242: 5757, 1967.

    PubMed  CAS  Google Scholar 

  2. Kohn L.D., Lee G., Grollman E.F., Ledley F.D., Mullin B.R., Friedman R.M., Meldolesi M.F., Aloj S.M. Membrane glycolipids and their relationship to the structure and function of cell surface receptors for glycoproteic hormones, bacterial toxins and interferon. In: Harmon G. (Ed.), Cell surface carbohydrate chemistry. Academic Press, New York, 1978 p. 103.

    Chapter  Google Scholar 

  3. Mullin B.R., Fishman P.H., Lee G., Aloj S.M., Ledley F.D., Winand R.J., Kohn L.D., Brady R.O. Thyrotropin-ganglioside interactions and their relationship to the structure and function of thyrotropin receptors. Proc. Natl. Acad. Sci. USA 73: 842, 1976.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Yavin E., Yavin Z., Schneider M.D., Kohn L.D. Monoclonal antibodies to the thyrotropin receptor: implications for receptor structure and the action of autoantibodies in Graves’ disease. Proc. Natl. Acad. Sci. USA. 78: 3180, 1981.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Valente W.A., Vitti P., Yavin Z., Yavin E., Rotella C.M., Grollman E.F., Toccafondi R., Kohn L.D. Graves’ monoclonal antibodies to the thyrotropin receptor: stimulating and blocking antibodies derived from lymphocites of patients. Proc. Natl. Acad. Sci. USA 79: 6680, 1982.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Aloj S.M., Lee G., Grollman E.F., Beguinot F., Consiglio E., Kohn L.D. Role of phospholipids in the structure and function of thyrotropin receptor. J. Biol. Chem. 254: 9040, 1979.

    PubMed  CAS  Google Scholar 

  7. Kohn L.D., Meldolesi M.F., Aloj S.M., Vitti P., Valente W.A., Laccetti P., Cohen J.L., Dianzani U., Grollman E.F. A molecular model of the thyrotropin receptor: experimental and human thyroid tumors with relevant defects. In: Andreoli M., Monaco F., Robbins J. (Eds.), Advances in thyroid neoplasia. Field Educational, Rome 1981, p. 23.

    Google Scholar 

  8. Macchia V., Meldolesi M.F., Chiariello M. Adenyl cyclase in a transplantable thyroid tumor: loss of ability to respond to TSH. Endocrinology 90: 1483, 1972.

    Article  PubMed  CAS  Google Scholar 

  9. Macchia V., Meldolesi M.F. Cell membrane of thyroid and its altered responsiveness to the hormone TSH. In: Ceccarelli B., Meldolesi J., Clementi F. (Eds.), Citormacology of secretion. Raven Press, New York, 1973, p. 33.

    Google Scholar 

  10. Mandato E., Meldolesi M.F., Macchia V. Diminished binding of thyroid stimulating hormone in a transplantable rat thyroid tumors as a possible cause of hormone unresponsiveness. Cancer Res. 35: 3089, 1975.

    PubMed  CAS  Google Scholar 

  11. Meldolesi M.F., Fishman P.H., Aloj S.M., Kohn L.D., Brady R.O. Relationship of gangliosides to the structure and function of thyrotropin receptors: their absence on plasma membranes of a thyroid tumor defective in thyrotropin receptor activity. Proc. Natl. Acad. Sci. USA 73: 4060, 1976.

    Article  CAS  Google Scholar 

  12. Laccetti P., Grollman E.F., Aloj S.M., Kohn L.D. Ganglioside dependent return of TSH receptor function in a rat thyroid tumor with a TSH receptor defect. Biochem. Biophys. Res. Commun. 110: 772, 1983.

    Article  PubMed  CAS  Google Scholar 

  13. Macchia V., Meldolesi M.,F., Mandato E. Alterations in TSH-receptor in two transplantable rat thyroid tumors. Ann. Radiol. 22: 752, 1977.

    Google Scholar 

  14. Tate R.L., Holmes J.M., Kohn L.D., Winand R.J. Characteristics of a solubilized thyrotropin receptor from bovine thyroid plasma membranes. J. Biol. Chem. 250: 6527, 1975.

    PubMed  CAS  Google Scholar 

  15. Wollman S.H. Production and properties of transplantable tumors of the thyroid gland in Fisher rats. Recent Prog. Horm. Res. 19: 579, 1963.

    PubMed  CAS  Google Scholar 

  16. Meldolesi M.F., Fishman P.H., Aloj S.M., Ledley F.D., Lee G., Bradley R.M., Brady R.O., Kohn L.D. Separation of the glycoprotein and ganglioside components of thyrotropin receptor activity in plasma membranes. Biochem. Biophys. Res. Commun. 75: 581, 1977.

    Article  PubMed  CAS  Google Scholar 

  17. Drummond R.W., McQuade R., Grunwald R., Thomas C.G., Nayfeh S.N. Separation of two thyrotropin binding components from porcine thyroid tissue by affinity chromatography: Characterization of high and low affinity sites. Proc. Natl. Acad. Sci. USA 79: 2202, 1982.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Pekonen F., Weintraub B.D. Salt-induced exposure of high affinity receptor of human and porcine thyroid membranes. J. Biol. Chem. 255: 8121, 1980.

    PubMed  CAS  Google Scholar 

  19. Aloj S.M., Lee G., Consiglio E., Formisano S., Minton A.P., Kohn L.D. Dansylated thyrotropin as a probe of hormone receptor interactions. J. Biol. Chem. 254: 9030, 1979.

    PubMed  CAS  Google Scholar 

  20. Martin R.G., Ames B.N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J. Biol. Chem. 236: 1372, 1961.

    PubMed  CAS  Google Scholar 

  21. Leeden R.W., Yu R.K. Gangliosides: structure, isolation and analysis. Methods Enzymol. 83: 139, 1982.

    Article  Google Scholar 

  22. Folch J., Lees M., Sloane Stanley C.M. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226: 497, 1957.

    PubMed  CAS  Google Scholar 

  23. Macchia V., Pastan I. Effect of sphingomyelinase from Clostridium perfringens on the metabolic activity and phospholipid composition of thyroid slices. Biochim. Biophys. Acta 152: 704, 1968.

    Article  PubMed  CAS  Google Scholar 

  24. Di Carlo A., Mariano A., D’Antonio F., Macchia V. The cyclic AMP levels in thyroid glands from tapazoletreated rats. Bull. Mol. Biol. Med. 9: 183, 1984.

    Google Scholar 

  25. De Wolf M.J.S., Vitti P., Ambesi-Impiombato F.S., Kohn L.D. Thyroid membrane ADP ribosyltransferase activity. Stimulation by thyrotropin and activity in functioning and non functioning rat thyroid cells in culture. J. Biol. Chem. 256: 12287, 1981.

    PubMed  Google Scholar 

  26. Lowry O.H., Rosebrough N.J., Barr A.L., Randall R.J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265, 1951.

    PubMed  CAS  Google Scholar 

  27. Michell R.H. Inositol phospholipids and cell surface receptor function. Biochim. Biophys. Acta 415: 81, 1975.

    Article  PubMed  CAS  Google Scholar 

  28. Axelrod J., Hirata F. The possible functional significance of phosphatidylethanolamine methylation. Nature 288: 278, 1980.

    Article  CAS  Google Scholar 

  29. Hirata F., Strittmater W.J., Axelrod J. Beta adrenergic receptors agonists increase phospholipid methylation, membrane fluidity, and beta adrenergic receptor adenylate cyclase coupling. Proc. Natl. Acad. Sci. USA 76: 368, 1979.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laccetti, P., Meldolesi, M.F., Beguinot, L. et al. Alteration in the transmission of TSH-message to thyroid target in a transplantable rat thyroid tumor. J Endocrinol Invest 9, 359–366 (1986). https://doi.org/10.1007/BF03346943

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03346943

Key-words

Navigation