Skip to main content
Log in

The interaction between mediobasohypothalamic dopaminergic and endorphinergic neuronal systems as a key regulator of reproduction: an hypothesis

  • Review Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Conclusion

The models shown in Figure 3, illustrating proposed interactions between MBH dopaminergic and endorphinergic neuronal activity as well as gonadal steroids and PRL in the regulation of GnRH secretion, Figures. 4 and 5, illustrating that these putative mechanisms may be mediated by other neuronal activity, and Figure 6, illustrating a hypothetical mechanism by which some other neuromodulators could integrate with this regulation, do appear to offer credible, although admittedly simplistic, mechanisms for much of the fundamental neuroendocrine regulation of reproduction. There are obvious limitations to these models, including the facts that all of the MBH dopaminergic or endorphinergic neurons most certainly do not serve the same functions or respond uniformly, that many undoubtably critical parameters have essentially been ignored, that species and sex differences have occasionally not been considered, and that interactions outside of the MBH are also clearly important, especially in the rat. Furthermore, the line between hypothesis and speculation has clearly been crossed in some instances. Nonetheless, when the consistently likely roles of these basic interactions in the full panorama of experimental and physiological functions discussed here are considered together, it is indeed apparent that these interactions between mediobasohypothalamic dopaminergic and endorphinergic neuronal systems probably represent key regulatory mechanisms in reproduction. However, I acknowledge the counsel of pioneering neuroscientist Santiago Ramon y Cajal, who wrote “I wish to warn young men against the invincible attraction of theories which simplify and unify seductively” (324) and thus offer these models only as heuristic bases for probing the actual, and clearly far more complex, physiological mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pohl C.R., Knobil E. The role of the central nervous system in the control of ovarian function in higher primates. Ann. Rev. Physiol. 44: 583, 1982.

    CAS  Google Scholar 

  2. Ojeda S.R., Aguado L.I., Smith S.(White) Neuroendocrine mechanisms controlling the onset of female puberty: the rat as a model. Neuroendocrinology 37: 306, 1983.

    PubMed  CAS  Google Scholar 

  3. Yen S.S.C., Quigley M.E., Reid R.L., Ropert F.F., Cetel N.S. Neuroendocrinology of opioid peptides and their role in the control of gonadotropin and prolactin secretion. Am. J. Obstet. Gynecol. 152: 485, 1985.

    PubMed  CAS  Google Scholar 

  4. Mann C. Meta-analysis in the breech. Science 249: 476, 1990.

    PubMed  CAS  Google Scholar 

  5. Rasmussen D.D., Gambacciani M., Swartz W.H., Tueros V.S., Yen S.S.C. Pulsatile GnRH release from the human mediobasal hypothalamus in vitro: opiate receptor mediated suppression. Neuroendocrinology 49: 150, 1989.

    PubMed  CAS  Google Scholar 

  6. Blake C.A., Sawyer C.H. Effects of hypothalamic deafferentation on the pulsatile rhythm in plasma concentrations of luteinizing hormone in ovariectomized rats. Endocrinology 94: 730, 1974.

    PubMed  CAS  Google Scholar 

  7. Ferin M., Antunes J.L., Zimmerman E., Dyrenfurth I., Frantz A.G., Robinson A., Carmel P.W. Endocrine function in female Rhesus monkeys after hypothalamic disconnection. Endocrinology 101: 1611, 1977.

    PubMed  CAS  Google Scholar 

  8. Bourguignon J., Gerard A., Debougnoux G., Rose J., Franchimont P. Pulsatile release of gonadotropin-releasing hormone (GnRH) from the rat hypothalamus in vitro: Calcium and glucose dependency and inhibition by superactive GnRH analogs. Endocrinology 121: 993, 1987.

    PubMed  CAS  Google Scholar 

  9. Ajika K. Simultaneous localization of LHRH and catecholamines in rat hypothalamus. J. Anat. 128: 331, 1979.

    PubMed Central  PubMed  CAS  Google Scholar 

  10. Bugnon C., Bloch B., Lenys D., Gouget A., Fellmann D. Comparative study of the neuronal populations containing beta-endorphin, corticotropin and dopamine in the arcuate nucleus of the rat hypothalamus. Neurosci. Lett. 14: 43, 1979.

    PubMed  CAS  Google Scholar 

  11. Rasmussen D.D., Liu J.H., Wolf P.L., Yen S.S.C. Endogenous opioid regulation of gonadotropinreleasing hormone release from the human fetal hypothalamus in vitro. J. Clin. Endocrinol. Metab. 57: 881, 1983.

    PubMed  CAS  Google Scholar 

  12. Rasmussen D.D., Liu J.H., Wolf P.L., Yen S.S.C. Neurosecretion of human hypothalamic immunoreactive beta-endorphin: in vitro regulation by dopamine. Neuroendocrinology 45: 197, 1987.

    PubMed  CAS  Google Scholar 

  13. Rasmussen D.D., Liu J.H., Wolf P.L., Yen S.S.C. Gonadotropin-releasing hormone neurosecretion in the human hypothalamus: in vitro regulation by dopamine. J. Clin. Endocrinol. Metab. 62: 479, 1986.

    PubMed  CAS  Google Scholar 

  14. McNeill T.H., Sladek Jr. J.R. Fluorescence-immunocytochemistry: simultaneous localization of catecholamines and gonadotropinreleasing hormone. Science 200: 72, 1978.

    PubMed  CAS  Google Scholar 

  15. Rasmussen D.D., Kennedy B.P., Ziegler M.G., Nett T.M. Endogenous opioid inhibition and facilitation of gonadotropin-releasing hormone release from the median eminence in vitro: potential role of catecholamines. Endocrinology 123: 2916, 1988.

    PubMed  CAS  Google Scholar 

  16. Kuljis R.O., Advis J.P. Immunocytochemical and physiological evidence of a synapse between dopamine- and luteinizing hormone releasing hormone- containing neurons in the ewe median eminence. Endocrinology 124(3): 1579, 1989.

    PubMed  CAS  Google Scholar 

  17. Rasmussen D.D. New concepts in the regulation of hypothalamic gonadotropin releasing hormone (GnRH) secretion. J. Endocrinol. Invest. 9: 427, 1986.

    PubMed  CAS  Google Scholar 

  18. Schulz R., Wilhelm A., Pirke K.M., Gramsch C., Herz A. β-endorphin and dynorphin control serum luteinizing hormone level in immature female rats. Nature 294: 757, 1981.

    PubMed  CAS  Google Scholar 

  19. Gudelsky G.A., Porter J.C. Morphine and opioid-induced inhibition of the release of dopamine from tuberoinfundibular neurons. Life Sci. 25: 1697, 1979.

    PubMed  CAS  Google Scholar 

  20. Deyo S.N., Swift R.M., Miller R.J. Morphine and endorphins modulate dopamine turnover in rat median eminence. Proc. Natl. Acad. Sci. USA 76: 3006, 1979.

    PubMed Central  PubMed  CAS  Google Scholar 

  21. Wilkes M.M., Yen S.S.C. Reduction by β-endorphin of efflux of dopamine and DOPAC from superfused medial basal hypothalamus. Life Sci. 27: 1387, 1980.

    PubMed  CAS  Google Scholar 

  22. Brownstein M.J. Biologically active peptides in the brain. In: Karlin A., Tennyson V.M., Vogel H.J. (Eds.), Neuronal information transfer. Academic Press, New York, 1978, p. 271.

    Google Scholar 

  23. Rasmussen D.D. In vitro, dopamine (DA) inhibits hypothalamic GnRH release by stimulating endogenous opiate activity. Proc. Endocrine Soc. Mtg. 62, 1989.

  24. Allen D.L., Blum M., Roberts J.L. Dopaminergic and adrenergic regulation of hypothalamic proopiomelanocortin RNA. Proc. Soc. Neurosci. Mtg. 15: 228, 1989 (Abstract).

    Google Scholar 

  25. Rasmussen D.D., Allen D.L., Jakubowski M., Roberts J.L. Hypothalamic POMC mRNA levels during recovery from chronic estradiol: dopaminergic mechanism? Proc. Soc. Neurosci. Mtg. 16: 1202, 1990 (Abstract).

    Google Scholar 

  26. Selmanoff M. Rapid effects of hyperprolactinemia on basal prolactin secretion and dopamine turnover in the medial and lateral median eminence. Endocrinology 116: 1943, 1985.

    PubMed  CAS  Google Scholar 

  27. Foreman M.M., Porter J.C. Prolactin augmentation of dopamine and norepinephrine release from superfused medial basal hypothalamic fragments. Endocrinology 108: 800, 1981.

    PubMed  CAS  Google Scholar 

  28. Gudelsky G.A., Simpkins J., Mueller G.P., Meites J., Moore K.E. Selective actions of prolactin on catecholamine turnover in the hypothalamus and on serum LH and FSH. Neuroendocrinology 22: 206, 1976.

    PubMed  CAS  Google Scholar 

  29. Hokfelt T., Fuxe K. Effects of prolactin and ergot alkaloids on tuberoinfundibular dopamine (DA) neurons. Neuroendocrinology 9: 100, 1972.

    PubMed  CAS  Google Scholar 

  30. Selmanoff M. The lateral and medial median eminence: distribution of dopamine, norepinephrine, and luteinizing hormone-releasing hormone and the effect of prolactin on catecholamine turnover. Endocrinology 108: 1716, 1981.

    PubMed  CAS  Google Scholar 

  31. Piotte M., Beaudet A., Joh T.H., Brawer J.R. The fine structural organization of tyrosine hydroxylase immunoreactive neurons in rat arcuate nucleus. J. Comp. Neurol. 239: 44, 1985.

    PubMed  CAS  Google Scholar 

  32. Morel G., Pelletier G. Endorphinergic neurons are contacting the tuberoinfundibular dopaminergic neurons in the rat brain. Peptides 7: 1197, 1986.

    PubMed  CAS  Google Scholar 

  33. Geffen L.B. Release of dopamine from dendrites in substantia nigra. Nature 260: 258, 1976.

    PubMed  CAS  Google Scholar 

  34. Hattori T., McGeer P.L., McGeer E.G. Dendro-axonic neurotransmission: II. Morphological sites for the synthesis, binding and release of neurotransmitters in dopaminergic dendrites in the substantia nigra and cholinergic dendrites in the neostriatum. Brain Res. 170: 71, 1979.

    PubMed  CAS  Google Scholar 

  35. Mercer L., del Fiacco M., Cuello A.C. The smooth endoplasmic reticulum as a possible storage site for dendritic dopamine in substantia nigra neurons. Experientia 35: 101, 1979.

    PubMed  CAS  Google Scholar 

  36. Nieoullon A., Cheramy A., Glowinski J. Release of dopamine from terminals and dendrites of the two nigro-striatal dopaminergic pathways in response to unilateral sensory stimuli in the cat. Nature 269: 340, 1977.

    PubMed  CAS  Google Scholar 

  37. Leibowitz S.F., Jhanwar-Uniyal M., Dvorkin B., Makman M.H. Distribution of alpha-adrenergic, beta-adrenergic and dopaminergic receptors in discrete hypothalamic areas of rat. Brain Res. 233: 97, 1982.

    PubMed  CAS  Google Scholar 

  38. Quigley M.E., Sheehan K.L., Casper R.F., Yen S.S.C. Evidence for an increased opioid inhibition of luteinizing hormone secretion in hyperprolactinemic patients with pituitary microadenoma. J. Clin. Endocrinol. Metab. 50: 427, 1980.

    PubMed  CAS  Google Scholar 

  39. Sarkar D.K., Yen S.S.C. Hyperprolactinemia decreases the luteinizing hormone-releasing hormone concentration in pituitary portal plasma: a possible role for β-endorphin as a mediator. Endocrinology 116: 2080, 1985.

    PubMed  CAS  Google Scholar 

  40. Carter D.A., Cooper J.S., Inkster S.E., Whitehead S.A. Evidence for an increased opioid inhibition of LH secretion in hyperprolactinaemic ovariectomized rats. J. Endocrinol. 101: 57, 1984.

    PubMed  CAS  Google Scholar 

  41. Scarbrough K., Steiner R.A., Wise P.M. Hyperprolactinemia (HyperPRL) increases proopiomelanocortin gene expression in the arcuate nucleus of ovariectomized rats. Proc. Soc. Neurosci. Mtg. 15: 722, 1989 (Abstract).

    Google Scholar 

  42. Selmanoff M., Shu C., Hartman R.D., Barraclough C.A., Peterson S.L. Tyrosine hydroxylase and POMC mRNA in the arcuate region are increased by castration and hyperprolactinemia. Mol. Brain Res. 1990 (In press).

  43. Weiner R.I., Cronin M.D., Cheung C.Y., Annunziato L., Faure N., Goldsmith P.C. Dopamine: A Prolactin Inhibitory Hormone. In: Muller E.E., Agnoli A. (Eds.), Neuroendocrine Correlates in Neurology and Psychiatry. Elsevier/North-Holland Biomedical Press, 1979, p. 41.

  44. Fink G. Oestrogen and progesterone interactions in the control of gonadotrophin and prolactin secretion. J. Steroid Biochem. 30: 169, 1988.

    PubMed  CAS  Google Scholar 

  45. Strobl F.J., Levine J.E. Estrogen inhibits luteinizing hormone (LH), but not follicle-stimulating hormone secretion in hypophysectomized pituitary-grafted rats receiving pulsatile LH-releasing hormone infusions. Endocrinology 123: 622, 1988.

    PubMed  CAS  Google Scholar 

  46. Pau K.-Y.F., Gliessman P.M., Hess D.L., Ronnekleiv O.K., Levine J.E., Spies H.G. Acute administration of estrogen suppresses LH secretion without altering GnRH release in ovariectomized Rhesus macaques. Brain Res. 517: 229, 1990.

    PubMed  CAS  Google Scholar 

  47. Strobl F.J., Gilmore C.A., Levine J.E. Castration induces luteinizing hormone (LH) secretion in hypophysectomized pituitary-grafted rats receiving pulsatile LH-releasing hormone infusions. Endocrinology 124: 1140, 1989.

    PubMed  CAS  Google Scholar 

  48. Pickle R.L., Ramirez V.D. Simultaneous in vivo measurement of LH and LHRH from the same anterior pituitary push-pull perfusion sample in intact and castrated male rats Proc. Soc. Neurosci. Mtg. 16: 1201, 1990 (Abstract).

    Google Scholar 

  49. Clarke I.J., Thomas G.B., Yao B., Cummins J.T. GnRH secretion throughout the ovine estrous cycle. Neuroendocrinology 46: 82, 1987.

    PubMed  CAS  Google Scholar 

  50. Lustig R.H., Pfaff D.W., Fishman J. Opioidergic modulation of the estradiol-induced LH surge in the rat: roles of ovarian steroids. J. Endocrinol. 116: 55, 1988.

    PubMed  CAS  Google Scholar 

  51. Quigley M.E., Yen S.S.C. The role of endogenous opiates on luteinizing hormone secretion during the menstrual cycle. J. Clin. Endocrinol. Metab. 51: 179, 1980.

    PubMed  CAS  Google Scholar 

  52. Ropert J.F., Quigley M.E., Yen S.S.C. Endogenous opiates modulate pulsatile luteinizing hormone release in humans. J. Clin. Endocrinol. Metab. 52: 583, 1981.

    PubMed  CAS  Google Scholar 

  53. Goldsmith P.C., Thind K.K. Modulation of GnRH pulse generator activity. In: Genazzani A.R., Montemagno U., Nappi C., Petraglia F. (Eds.), The brain and female reproductive function. The Parthenon Publishing Group, Park Ridge, New Jersey, 1988, p. 21.

    Google Scholar 

  54. Karahalios D.G., Levine J.E. Naloxone stimulation of in vivo LHRH release is not diminished following ovariectomy. Neuroendocrinology 47: 504, 1988.

    PubMed  CAS  Google Scholar 

  55. Tong Y., Zhao H., Labrie F., Pelletier G. Regulation of proopiomelanocortin messenger ribonucleic acid content by sex steroids in the arcuate nucleus of the female rat brain. Neurosci. Lett. 112: 104, 1990.

    PubMed  CAS  Google Scholar 

  56. Wilcox J.N., Roberts J.L. Estrogen decreases rat hypothalamic proopiomelanocortin messenger ribonucleic acid levels. Endocrinology 117: 2392, 1985.

    PubMed  CAS  Google Scholar 

  57. Schachter B.S., Pfaff D.W., Shivers B.D. Quantitative in situ hybridization for studying estrogen’s effect on hypothalamic endorphin gene expression. Proc. Soc. Neurosci. Mtg. 12: 4, 1986 (Abstract).

    Google Scholar 

  58. Roberts J.L., Wilcox J.N., Blum M. The regulation of proopiomelanocortin gene expression by estrogen in the rat hypothalamus. In: Fink A., Harmar A.J., McKerns K.W. (Eds.), Neuroendocrine Molecular Biology. Plenum Press, New York, 1986, p. 261.

    Google Scholar 

  59. Wardlaw S.L., Thoron L., Frantz A.G. Effects of sex steroids on brain beta-endorphin. Brain Res. 245: 327, 1982.

    PubMed  CAS  Google Scholar 

  60. Wardlaw S.L., Wang P.J., Frantz A.G. Regulation of β-endorphin and ACTH in brain by estradiol. Life Sci. 37: 1941, 1985.

    PubMed  CAS  Google Scholar 

  61. Wardlaw S.L. Regulation of beta-endorphin, corticotropin-like intermediate lobe peptide, and alpha-melanotropinstimulating hormone in the hypothalamus by testosterone. Endocrinology 119: 19, 1986.

    PubMed  CAS  Google Scholar 

  62. Blum M., Roberts J.L., Wardlaw S.L. Androgen regulation of Proopiomelanocortin Gene Expression and Peptide Content in the Basal Hypothalamus. Endocrinology 124: 2283, 1989.

    PubMed  CAS  Google Scholar 

  63. Wehrenberg W.B., Wardlaw S.L., Frantz A.G., Ferin M. β-endorphin in hypophyseal portal blood: variations throughout the menstrual cycle. Endocrinology 111: 879, 1982.

    PubMed  CAS  Google Scholar 

  64. Wardlaw S.L., Wehrenberg W.B., Ferin M., Antunes J.L., Frantz A.G. Effect of sex steroids on β-endorphin in hypophyseal portal blood. J. Clin. Endocrinol. Metab. 55: 877, 1982.

    PubMed  CAS  Google Scholar 

  65. Rasmussen D.D. High post-ovariectomy LH levels are not due to decreased opioid inhibition of GnRH. Brain Res. Bull. 26: 1991, in Press.

  66. Kalra S.P., Kalra P.S. Do testosterone and estradiol-17β enforce inhibition or stimulation of luteinizing hormone-releasing hormone secretion? Biol. Reprod. 41: 559, 1989.

    PubMed  CAS  Google Scholar 

  67. Roberts J.L., Dutlow C.M., Jakubowski M., Blum M., Millar R.P. Estradiol stimulates preoptic area-anterior hypothalamic proGnRH-GAP gene expression in ovariectomized ats. Mol. Brain Res. 6: 127, 1989.

    PubMed  CAS  Google Scholar 

  68. Zoeller R.T., Seeburg P.H., Young W.S. III In situ hybridization histochemistry for messenger ribonucleic acid (mRNA) encoding gonadotropinreleasing hormone (GnRH): effect of estrogen on cellular levels of GnRH mRNA in female rat brain. Endocrinology 122: 2570, 1988.

    PubMed  CAS  Google Scholar 

  69. Chowen-Breed J., Fraser H.M., Vician L., Damassa D.A., Clifton D.K., Steiner R.A. Testosterone regulation of proopiomelanocortin messenger ribonucleic acid in the arcuate nucleus of the male rat. Endocrinology 124: 1697, 1989.

    PubMed  CAS  Google Scholar 

  70. DePaolo L.V., McCann S.M., Negro-Vilar A. A sex difference in the activation of hypothalamic catecholaminergic and luteinizing hormone-releasing hormone peptidergic neurons after acute castration. Endocrinology 110: 531, 1982.

    PubMed  CAS  Google Scholar 

  71. Advis J.P., McCann S.M., Negro-Vilar A. Evidence that catecholaminergic and peptidergic (luteinizing hormone-releasing hormone) neurons in suprachiasmatic-medial preoptic, medial basal hypothalamus and median eminence are involved in estrogen-negative feedback. Endocrinology 107: 892, 1980.

    PubMed  CAS  Google Scholar 

  72. Toney T.W., Lookingland K.J., Moore K.E. Effects of orchidectomy on basal and stress-induced decreases in tuberoinfundibular dopaminergic (TIDA) neuronal activity. Proc. Soc. Neurosci. Mtg. 15: 1372, 1989 (Abstract).

    Google Scholar 

  73. Gunnet J.W., Lookingland K.J., Moore K.E. Comparison of the effects of castration and steroid replacement on incertohypothalamic dopaminergic neurons in male and female rats. Neuroendocrinology 44: 269, 1986.

    PubMed  CAS  Google Scholar 

  74. Crowley W.R. Effects of ovarian hormones on norepinephrine and dopamine turnover in individual hypothalamic and extrahypothalamic. Neuroendocrinology 34: 381, 1982.

    PubMed  CAS  Google Scholar 

  75. Cramer O.M., Parker C.R., Porter J.C. Estrogen inhibition of dopamine release into hypophysial portal blood. Endocrinology 104: 419, 1979.

    PubMed  CAS  Google Scholar 

  76. Luine V.N., McEwen B.S., Black I.B. Effect of 17β-estradiol on hypothalamic tyrosine hydroxylase activity. Brain Res. 120: 188, 1977.

    PubMed  CAS  Google Scholar 

  77. Blum M., McEwen B.S., Roberts J.L. Transcriptional analysis of tyrosine hydroxylase gene expression in the tuberoinfundibular dopaminergic neurons of the rat arcuate nucleus after estrogen treatment. J. Biol. Chem. 262: 817, 1987.

    PubMed  CAS  Google Scholar 

  78. Ferland L., Labrie F., Eurvard C., Raymond J.P. Antidopaminergic activity of estrogens on prolactin release at the pituitary level in vivo. Mol. Cell. Endocrinol. 14: 199, 1979.

    PubMed  CAS  Google Scholar 

  79. Raymond V., Beaulieu M., Labrie F., Boissier J. Potent antidopaminergic activity of estradiol at the pituitary level on prolactin release. Science 200: 1173, 1978.

    PubMed  CAS  Google Scholar 

  80. Wise P.M., Rance N., Barraclough C.A. Effects of estradiol and progesterone on catecholamine turnover rates in discrete hypothalamic regions in ovariectomized rats. Endocrinology 108: 2186, 1981.

    PubMed  CAS  Google Scholar 

  81. Gudelsky G.A., Porter J.C. Release of dopamine from tuberoinfundibular neurons into pituitary stalk blood after prolactin or haloperidol administration. Endocrinology 106: 526, 1980.

    PubMed  CAS  Google Scholar 

  82. Arita J., Kimura F. Characterization of in vitro dopamine synthesis in the median eminence of rats with haloperidol-induced hypoprolactinemia. Endocrinology 119: 1666, 1986.

    PubMed  CAS  Google Scholar 

  83. Demarest K.T., Riegle G.D., Moore K.E. Long-term treatment with estradiol induces reversible alterations in tuberoinfundibular dopaminergic neurons: a decreased responsiveness to prolactin. Neuroendocrinology 39: 193, 1984.

    PubMed  CAS  Google Scholar 

  84. Eikenburg D.C., Ravitz A.J., Gudelsky G.A., Moore K.E. Effects of estrogen on prolactin and tuberoinfundibular dopaminergic neurons. J. Neural Transm. 40: 235, 1977.

    PubMed  CAS  Google Scholar 

  85. Pasqualini C., Guibert B., Faucon-Biquet N., Kerdelhue B., Leviel V. Estradiol modulates the activity and quantity of tyrosine hydroxylase in the median eminence. Proc. Soc. Neurosci. Mtg. 16: 1202, 1990 (Abstract).

    Google Scholar 

  86. Arendash G.W., Leung P.C.K. Alleviation of estrogen-induced hyperprolactinemia through intracerebral transplantation of hypothalamic tissue containing dopaminergic neurons. Neuroendocrinology 43: 359, 1986.

    PubMed  CAS  Google Scholar 

  87. Jones E.E., Naftolin F. Estrogen effects on the tuberoinfundibular dopaminergic system in the female rat brain. Brain Res. 510: 84, 1990.

    PubMed  CAS  Google Scholar 

  88. Arita J., Kimura F. Direct inhibitory effect of long term estradiol treatment on dopamine synthesis in tuberoinfundibular dopaminergic neurons: In vitro studies using hypothalamic slices. Endocrinology 121: 692, 1987.

    PubMed  CAS  Google Scholar 

  89. Voogt J.L., de Greef W.J., Visser T.J., De Koning J., Vreburg J.T.M., Weber R.F.A. In vivo release of dopamine, luteinizing hormone-releasing hormone and thyrotropin-releasing hormone in male rats bearing a prolactin-secreting tumor. Neuroendocrinology 46: 110, 1987.

    PubMed  CAS  Google Scholar 

  90. Arita J., Kojima Y., Kimura F. Enhanced dopamine synthesis and release in vitro in the median eminence of rat hypothalamus are associated with involution of estradiol-induced pituitary tumors. Endocrinology 124: 1998, 1989.

    PubMed  CAS  Google Scholar 

  91. Demarest K.T., Moore K.E. Sexual differences in the sensitivity of tuberoinfundibular dopamine neurons to the action of prolactin. Neuroendocrinology 32: 108, 1981.

    PubMed  CAS  Google Scholar 

  92. Demarest K.T., McKay D.W., Riegle G.D., Moore K.E. Sexual differences in tuberoinfundibular dopamine nerve activity induced by neonatal androgen exposure. Neuroendocrinology 32: 108, 1981.

    PubMed  CAS  Google Scholar 

  93. Ben-Jonathan N., Oliver C., Weiner H.J., Mical R.S., Porter J.C. Dopamine in hypophyseal portal plasma of the rat during the estrous cycle and throughout pregnancy. Endocrinology 100: 452, 1977.

    PubMed  CAS  Google Scholar 

  94. Reddy V.V.R., Rajan R., Daly M.J. Oestrogen metabolism in adult rat’s brain. Acta Endocrinol. (Copenh.) 96: 7, 1981.

    CAS  Google Scholar 

  95. MacLusky N.J., Naftolin F., Krey L.C., Franks S. The catechol estrogens. J. Steroid Biochem. 15: 111, 1981.

    PubMed  CAS  Google Scholar 

  96. Weisz J., Crowley W.R. Catechol estrogen formation by the CNS: regional distribution of estrogen-2/4-hydroxylase activity in rat brain. Neuroendocrinology 43: 543, 1986.

    PubMed  CAS  Google Scholar 

  97. Parvizi N., Sar M., Duncan G.E., Stumpf W.E. Autoradiographic determination of catechol estrogen binding sites in brain, pituitary and uterus. Brain Res. 344: 373, 1985.

    PubMed  CAS  Google Scholar 

  98. Foreman M.M., Porter J.C. Effects of catechol estrogens and catecholamines on hypothalamic and corpus striatal tyrosine hydroxylase activity. J. Neurochem. 34: 1175, 1980.

    PubMed  CAS  Google Scholar 

  99. Hersey R.M., Lloyd T., MacLusky N., Weisz J. The catechol estrogen, 2-hydroxyestradiol-17α, is formed by hypothalamic tissue in vitro and inhibits tyrosine hydoxylase. Endocrinology 111: 1734, 1989.

    Google Scholar 

  100. Gonzalezs H.A., Kedzierski W., Aguila-Mansilla N., Porter J.C. Hormonal control of tyrosine hydroxylase in the median eminence: demonstration of a central role for the pituitary gland. Endocrinology 124: 2122, 1989.

    Google Scholar 

  101. Beattie C.W., Rodgers C.H., Soyka L.F. Influence of ovariectomy and ovarian steroids on hypothalamic tyrosine hydroxylase activity in the rat. Endocrinology 91: 276, 1972.

    PubMed  CAS  Google Scholar 

  102. Beattie C.W., Soyka L.F. Influence of progestational steroids on hypothalamic tyrosine hydroxylase activity in vitro. Endocrinology 93: 1453, 1973.

    PubMed  CAS  Google Scholar 

  103. Morrell J.I., Rosenthal M.F., McCabe J.T., Harrington C.A., Chikaraishi D.M., Pfaff D.W. Tyrosine hydroxylase mRNA in the neurons of the tuberoinfundibular region and zona incerta examined after gonadal steroid hormone treatment. Mol. Endocrinol. 3: 1426, 1989.

    PubMed  CAS  Google Scholar 

  104. Kapcala L.P., Juang H.H., Weng C.F. Estradiol-induced stimulation of secretion of immunoreactive β-endorphin from hypothalamic cell cultures. Neuroendocrinology 52(Suppl. 1): 81, 1990 (Abstract).

    Google Scholar 

  105. Petersen S.L., Shores S., McCrone S. Effect of estradiol (E2) on LHRH and POMC mRNA levels depends upon the interval between ovariectomy and hormone replacement. Proc. Soc. Neurosci. Mtg. 16: 395, 1990 (Abstract).

    Google Scholar 

  106. Morell J.I., McGinty J.F., Pfaff D.W. A subset of beta-endorphin or dynorphin dynorphin-containing neurons in the medial basal hypothalamus accumulates estradiol. Neuroendocrinology 41: 417, 1985.

    Google Scholar 

  107. Fox S.R., Shivers B.D., Harlan R.E., Pfaff D.W. Gonadotrophs and beta-endorphin-immunoreactive neurons contain progesterone receptors, but luteinizing hormone-releasing hormone-immunoreactive neurons do not. Proc. Soc. Study Reprod. Abstract No. 25: 1986.

  108. Sar M. Distribution of progestin-concentrating cells in rat brain: Colocalization of (3H)ORG.2058, a synthetic progestin, and antibodies to tyrosine hydroxylase in hypothalamus by combined autoradiography and immunocytochemistry. Endocrinology 123: 1110, 1988.

    PubMed  CAS  Google Scholar 

  109. Sar M. Estradiol is concentrated in tyrosine hydroxylasecontaining neurons of the hypothalamus. Science 223: 938, 1984.

    PubMed  CAS  Google Scholar 

  110. Kalra S.P., Allen L.G., Sahu A., Kalra P.S., Crowley W.R. Gonadal steroids and neuropeptide Y-opioid-LHRH axis: interactions and diversities. J. Steroid Biochem. 30: 185, 1988.

    PubMed  CAS  Google Scholar 

  111. Kalra S.P., Leadem C.A. Control of luteinizing hormone secretion by endogenous opioid peptides. In: Delitala G., Motta M., Serio M. (Eds.), Opioid modulation of endocrine function. Raven Press, New York, 1984, p. 171.

    Google Scholar 

  112. Ching M. Morphine suppresses the proestrous surge of GnRH in pituitary portal plasma of rats. Endocrinology 112: 2209, 1983.

    PubMed  CAS  Google Scholar 

  113. Leadem C.A., Kalra S.P. Reversal of β-endorphin-induced blockade of ovulation and LH surge with prostaglandin E2. Endocrinology 117: 684, 1985.

    PubMed  CAS  Google Scholar 

  114. Sarkar D.K., Yen S.S.C. Changes in β-endorphin-like immunoreactivity in pituitary portal blood during the estrous cycle and after ovariectomy in rats. Endocrinology 116: 2075, 1985.

    PubMed  CAS  Google Scholar 

  115. Gabriel S.M., Simpkins J.W., Kalra S.P. Modulation of endogenous opioid influence on luteinizing hormone secretion by progesterone and estrogen. Endocrinology 113: 1806, 1983.

    PubMed  CAS  Google Scholar 

  116. Rossmanith W.G., Mortola J.F., Yen S.S.C. Role of endogenous opioid peptides in the initiation of the midcycle luteinizing hormone surge in normal cycling women. J. Clin. Endocrinol. Metab. 67: 695, 1988.

    PubMed  CAS  Google Scholar 

  117. Peterson S.L. Temporal effects of E2 and P on arcuate POMC mRNA levels. Proc. Soc. Neurosci. Mtg. 15: 628, 1989 (Abstract).

    Google Scholar 

  118. Wise P.M., Scarbrough K., Weiland N.G., Larson G.H. Diurnal pattern of proopiomelanocortin gene expression in the arcuate nucleus of proestrous, ovariectomized, and steroid-treated rats: a possible role in cyclic luteinizing hormone secretion. Mol. Endocrinol. 4: 886, 1990.

    PubMed  CAS  Google Scholar 

  119. Thomson E., Rosie R., Blum M., Roberts J.L., Fink G. Estrogen positive feedback reduces arcuate proopiomelanocortin mRNA. Neuroendocrinology 52(Suppl. 1): 111, 1990 (Abstract).

    Google Scholar 

  120. Treiser S.L., Wardlaw S.L. Regulation of POMC gene expression in the hypothalamus of the female rat. Proc. Endo. Soc. Mtg. 72: 221, 1990 (Abstract).

    Google Scholar 

  121. Kerdelhue B., Bojda F., Lesieur P., Pasqualini C., El Abed A., Lenoir V., Douillet P., Chiueh M.C., Palkovits M. Median eminence dopamine and serotonin neuronal activity. Temporal relationship to preovulatory prolactin and luteinizing hormone surges. Neuroendocrinology 49: 176, 1989.

    PubMed  CAS  Google Scholar 

  122. Lofstrom A. Catecholamine turnover alterations in discrete areas of the median eminence of the 4- and 5-day cyclic rat. Brain Res. 120: 113, 1977.

    PubMed  CAS  Google Scholar 

  123. Pasqualini C., Bojda F., Gaudoux F., Guibert B., Leviel V., Teissier E., Rips R., Kerdelhue B. Changes in tuberoinfundibular dopaminergic neuron activity during the rat estrous cycle in relation to the prolactin surge: alteration by a mammary carcinogen. Neuroendocrinology 48: 320, 1988.

    PubMed  CAS  Google Scholar 

  124. Osterburg H.H., Telford N.A., Morgan D.G., Cohen-Becker I., Wise P.M., Finch C.E. Hypothalamic monoamines and their catabolites in relation to the estradiol-induced luteinizing hormone surge. Brain Res. 409: 31, 1987.

    PubMed  CAS  Google Scholar 

  125. Rance N., Wise P.M., Barraclough C.A. Negative feedback effects of progesterone correlated with changes in hypothalamic norepinephrine and dopamine turnover rates, median eminence luteinizing hormone-releasing hormone, and peripheral plasma gonadotropins. Endocrinology 108: 2194, 1981.

    PubMed  CAS  Google Scholar 

  126. Simpkins J.W., Huang H.H., Advis J.P., Meites J. Changes in hypothalamic NE and DA turnover rates resulting from steroid-induced LH and PRL surges in ovariectomized rats. Biol. Reprod. 20: 625, 1979.

    PubMed  CAS  Google Scholar 

  127. Morehead M.H., Lookingland K.J., Gala R.R. Stress-induced suppression of the prolactin afternoon surge in ovariectomized, estrogen-treated rats and the nocturnal surge in pseudopregnant rats are accompanied by an increase in median eminence dihydroxyphenylacetic acid concentrations. Neuroendocrinology 51: 208, 1990.

    PubMed  CAS  Google Scholar 

  128. Backstrom C.T., McNeilly A.S., Leask R.M., Baird D.T. Pulsatile Secretion of LH, FSH, Prolactin, Oestradiol and Progesterone during the Human Menstrual Cycle. Clin. Endocrinol. (Oxf.) 16: 1, 1982.

    Google Scholar 

  129. Hoff J.D., Quigley M.E., Yen S.S.C. Hormonal dynamics at midcycle: a reevaluation. J. Clin. Endocrinol. Metab. 57: 792, 1983.

    PubMed  CAS  Google Scholar 

  130. Kalra S.P., Kalra P.S. Temporal interrelationships among circulating levels of estradiol, progesterone and LH during the rat estrous cycle: effects of exogenous progesterone. Endocrinology 95: 1711, 1974.

    PubMed  CAS  Google Scholar 

  131. Wise P.M., Rance N., Selmanoff M., Barraclough C.A. Changes in radioimmunoassayable luteinizing hormone-releasing hormone in discrete brain areas of the rat at various times on proestrus, diestrous day 1, and after phenobarbital administration. Endocrinology 108: 2179, 1981.

    PubMed  CAS  Google Scholar 

  132. Zoeller R.T., Scott Young W. Changes in cellular levels of messenger ribonucleic acid encoding gonadotropin-releasing hormone in the anterior hypothalamus of female rats during the estrous cycle. Endocrinology 123: 1688, 1988.

    PubMed  CAS  Google Scholar 

  133. Park O.-K., Gugneja S., Mayo K.E. Gonadotropin-releasing hormone gene expression during the rat estrous cycle: effects of pentobarbital and ovarian steroids. Endocrinology 127: 365, 1990.

    PubMed  CAS  Google Scholar 

  134. Karsch F.J. Central actions of ovarian steroids in the feedback regulation of pulsatile secretion of luteinizing hormone. Ann. Rev. Physiol. 49: 365, 1987.

    CAS  Google Scholar 

  135. Ferin M., van Vugt D., Wardlaw S. The hypothalamic control of the menstrual cycle and the role of endogenous opioid peptides. Rec. Prog. Horm. Res. 40: 441, 1984.

    PubMed  CAS  Google Scholar 

  136. Seki K., Nagata I. Effects of a dopamine antagonist (metaclopramide) on the release of LH, FSH, TSH, and PRL in normal women throughout the menstrual cycle. Acta Endocrinol. (Copenh.) 122: 211, 1990.

    CAS  Google Scholar 

  137. Watanabe G., Terasawa E. In vivo release in luteinizing hormone releasing hormone increases with puberty in the female Rhesus monkey. Endocrinology 125: 92, 1989.

    PubMed  CAS  Google Scholar 

  138. Schultz N.J., Terasawa E. Posterior hypothalamic lesions advance the time of the pubertal changes in luteinizing hormone release in ovariectomized female Rhesus monkeys. Endocrinology 123: 445, 1988.

    PubMed  CAS  Google Scholar 

  139. Ojeda S.R., Urbanski H.F., Ahmed C.E. The onset of female puberty: studies in the rat. Rec. Prog. Horm. Res. 42: 385, 1986.

    PubMed  CAS  Google Scholar 

  140. Adams L.A., Steiner R.A. Puberty. Oxf. Rev. Reprod. Biol. 10: 1, 1988.

    PubMed  CAS  Google Scholar 

  141. Hohn K.G., Wuttke W. Ontogeny of catecholamine turnover rates in limbic and hypothalamic structures in relation to serum prolactin and gonadotropin levels. Brain Res. 179: 281, 1979.

    PubMed  CAS  Google Scholar 

  142. Wuttke W., Hohn K.G., Witte P., Honma K.J. Prolactin-catecholamine interactions and puberty. In: Usdin E., Kopin I.J., Barchas J. (Eds.), Catecholamines: Basic and Clinical Frontiers, Vol. 2. Pergamon Press, New York, 1989, p. 1233.

    Google Scholar 

  143. Porter J.C. Relationship of age, sex, and reproductive status to the quantity of tyrosine hydroxylase in the median eminence and superior cervical ganglion of the rat. Endocrinology 118: 1426, 1986.

    PubMed  CAS  Google Scholar 

  144. Marani E., Rietveld W.J., Boon M.E., Gerritis N.M. Fluorescence-displacement from the median eminence towards the arcuate nucleus at puberty. Histochemistry 73: 165, 1981.

    PubMed  CAS  Google Scholar 

  145. Rietveld W.J., Marani E., Boon M.F. Histochemistry of puberty. A multidisciplinary study in the rat. Acta Histochem. (Suppl.) 32: 63, 1986.

    CAS  Google Scholar 

  146. Piotte M., Beaudet A., Brawer J.R. Light and electron microscopic study of tyrosine hydroxylase-immunoreactive neurons within the developing rat arcuate nucleus. Brain Res. 439: 127, 1988.

    PubMed  CAS  Google Scholar 

  147. Zisapel N., Shaharabani M., Laudon M. Regulation of melatonin’s activity in the female rat brain by estradiol: effects on neurotransmitter release and on iodomelatonin binding sites. Neuroendocrinology 46: 207, 1987.

    PubMed  CAS  Google Scholar 

  148. Marani E., Rietveld W.J. Differential displacement of cells from the median eminence into the arcuate nucleus during puberty. Effects of melatonin administration. Experientia 43: 305, 1987.

    PubMed  CAS  Google Scholar 

  149. Durando P., Ferreira A., Celis M.E. Acute administration of alpha-melanotropin exerts a stimulatory control on puberty. Acta Endocrinol. (Copenh.) 120: 661, 1989.

    CAS  Google Scholar 

  150. Voogt J.L., Clemens J.A., Collu W.D. Effect of subcutaneous injections or implants of prolactin into the median eminence on onset of puberty and gonadotropin release in immature female rats. Fed. Proc. 28: 437, 1969.

    Google Scholar 

  151. Lichtensteiger W., Monnet F. Differential response of dopamine neurons to x-melanotropin and analogues in relation to their endocrine and behavioral potency. Life Sci. 25: 2079, 1987.

    Google Scholar 

  152. Zisapel N., Egozi Y., Laudon M. Circadian variations in the inhibition of dopamine release from adult and newborn rat hypothalamus by melatonin. Neuroendocrinology 40: 102, 1985.

    PubMed  CAS  Google Scholar 

  153. Gelato M., Meites J., Wuttke W. Adrenal involvement in the timing of puberty in female rats: interaction with serum prolactin levels. Acta Endocrinol. (Copenh.) 89: 590, 1978.

    CAS  Google Scholar 

  154. Aubert M.L., Rivest R.W., Lang U., Winiger B.P., Sizonenko P.C. Delayed sexual maturation induced by daily melatonin administration eliminates the LH response to naloxone despite normal responsiveness to GnRH in juvenile male rats. Neuroendocrinology 48: 72, 1988.

    PubMed  CAS  Google Scholar 

  155. Hompes P.G.A., Vermes J., Tilders F.J.H., Schoemaker J. Immunoreactive beta-endorphin in the hypothalamus of female rats: changes in content and release during prepubertal development. Dev. Brain Res. 5: 281, 1982.

    CAS  Google Scholar 

  156. Bhanot R., Wilkinson M. Opiatergic control of gonadotropin secretion during puberty in the rat: a neurochemical basis for the hypothalamic ‘gonadostat?’. Endocrinology 113: 596, 1983.

    PubMed  CAS  Google Scholar 

  157. Vician L., Adams L.A., Clifton D.K. Pro-opiomelanocortin messenger RNA in the arcuate nucleus increases with puberty in the male macaque. Proc. Endo. Soc. Mtg. 62: 316, 1989 (Abstract).

    Google Scholar 

  158. Wieman J.N., Clifton O.K., Steiner R.A. Pubertal changes in gonadotropin-releasing hormone and proopiomelanocortin gene expression in the brain of the male rat. Endocrinology 124: 1760, 1989.

    Google Scholar 

  159. Araki S., Toran-Allerand C.D., Ferin M., Vande Wiele R.L. Immunoreactive gonadotropin-releasing hormone (GnRH) during maturation in the rat: ontogeny of regional hypothalamic differences. Endocrinology 97: 693, 1975.

    PubMed  CAS  Google Scholar 

  160. Plant T.M. Neuroendocrine basis of puberty in the Rhesus monkey (Macaca Mulatta). In: Martini L., Ganong W.F. (Eds.), Frontiers in Neuroendocrinology, ed. 10. Raven Press, New York, 1988, p. 215.

    Google Scholar 

  161. Medhamurthy R., Gay V.L., Plant T.M. The prepubertal hiatus in gonadotropin secretion in the male Rhesus monkey (Macaca mulatta) does not appear to involve endogenous opioid peptide restraint of hypothalamic gonadotropin-releasing hormone release. Endocrinology 126: 1036, 1990.

    PubMed  CAS  Google Scholar 

  162. Fraioli F., Cappa M., Fabbri A., Gnessi L., Moretti C., Borrelli P., Isidori A. Lack of endogenous opioid inhibitory tone on LH secretion in early pituitary. Clin. Endocrinol. (Oxf.) 20: 299, 1984.

    CAS  Google Scholar 

  163. Petraglia F., Bernasconi S., Lughetti L., Loche S., Romanini F., Facchinetti F., Marcellini C., Genazani A.R. Naloxone-induced luteinizing hormone secretion in normal, precocious and delayed puberty. J. Clin. Endocrinol. Metab. 63: 1112, 1986.

    PubMed  CAS  Google Scholar 

  164. Brango C.W., Whisnant C.S., Goodman R.L. A role for catecholaminergic neurons in the suppression of pulsatile luteinizing hormone secretion in the prepubertal ewe lamb. Neuroendocrinology 52: 448, 1990.

    PubMed  CAS  Google Scholar 

  165. Norman R.L., Spies H.G. Brain lesions in infant female Rhesus monkeys: effects on menarche and first ovulation and on diurnal rhythms of prolactin and cortisol. Endocrinology 108: 1723, 1981.

    PubMed  CAS  Google Scholar 

  166. Terasawa E., Claypool L.E., Gore A.C., Watanabe G. The timing of the onset of puberty in the female Rhesus monkey. In: Delemarre-van de Waal H.A., et al (Eds.), Control of the onset of puberty III. Elsevier Science Publishers, 1989, p. 123.

  167. Ojeda S.R. Neurotrophic factors and development of hypothalamic reproductive function. Neuroendocrinology 52(Suppl. 1): 5, 1990 (Abstract).

    Google Scholar 

  168. Hiney J.K., Ojeda S.R., Dees W.L. Insulin-like growth factor I (IGF-I) stimulates LHRH release from the prepubertal female median eminence in vitro. Proc. Soc. Neurosci. Mtg. 16: 324, 1990 (Abstract).

    Google Scholar 

  169. Zecchinelli A., Pezzoli G., Ricciardi S., Burke R.E., Fahn S., Fusi R., Mariani C.B., Scarlato G., Carenzi A. Epidermal growth factor (EGF) enhances, in rats, dopaminergic pathway “in vivo” an immunohistochemical study. Proc. Soc. Neurosci. Mtg. 16: 999, 1990 (Abstract).

    Google Scholar 

  170. Casper D., Mytilineou C., Blum M. Epidermal growth factor is a mitogen and increases dopamine uptake in rat embryo mesencephalic primary culture. Proc. Soc. Neurosci. Mtg. 16: 999, 1990 (Abstract).

    Google Scholar 

  171. Bak T., Mytilineou C. The effect of epidermal growth factor on the development of dopamine neurons following exposure to the neurotoxin 1-methyl-4-phenylpyridine (MPP). Proc. Soc. Neurosci. Mtg. 16: 999, 1990 (Abstract).

    Google Scholar 

  172. Ramaley J.A., Campbell G.T. Serum prolactin concentrations in the adrenalectomized rat: relationships to puberty onset. Endocrinology 101: 890, 1977.

    PubMed  CAS  Google Scholar 

  173. Arbogast L.A., Voogt J.L. Ontogeny of tyrosine hydroxylase (TH) mRNA levels and catalytic activity in the rat hypothalamus. Proc. Soc. Neurosci. Mtg. 16: 870, 1990 (Abstract).

    Google Scholar 

  174. Blank M.S., Panerai A.E., Friesen H.G. Opioid peptides modulate luteinizing hormone secretion during sexual maturation. Science 203: 1129, 1979.

    PubMed  CAS  Google Scholar 

  175. Lamberts R., Wuttke W. Puberty of female rats may in part be explained by decreased hypothalamic dopamine receptor sensitivity. Brain Res. 215: 375, 1981.

    PubMed  CAS  Google Scholar 

  176. Wuttke W., Honma K., Lamberts R., Hohn K.G. The role of monoamines in female puberty. Fed. Proc. 39: 2378, 1980.

    PubMed  CAS  Google Scholar 

  177. Waldhauser F., Weiszenbacher G., Tatzer E., Gisinger B., Waldhauser M., Schemper M., Frisch H. Alterations in nocturnal serum melatonin levels in humans with growth and aging. J. Clin. Endocrinol. Metab. 66: 648, 1988.

    PubMed  CAS  Google Scholar 

  178. Pang S.F., Tang F., Tang P.L. Negative correlation of age and the levels of pineal melatonin, pineal N-acetylserotonin, and serum melatonin in male rats. J. Exp. Zool. 229: 41, 1984.

    PubMed  CAS  Google Scholar 

  179. Faigon M.R., Cardinali D., Moguilevsky J.A. Pinealectomy advances the time of development of steroid feed-back on luteinizing hormone release in immature female rats. Brain Res. 241: 366, 1982.

    PubMed  CAS  Google Scholar 

  180. Ramaley J.A., Bunn E.L. Seasonal variations in the onset of puberty in rats. Endocrinology 91: 611, 1972.

    PubMed  CAS  Google Scholar 

  181. Plant T.M., Zorub D.S. The role of nongonadal restraint of gonadotropin secretion in the delay of the onset of puberty in the Rhesus monkey (Macaca mulatta). J. Anim. Sci. 55(Suppl. 2): 43, 1982.

    PubMed  Google Scholar 

  182. Vanecek J., Pavlik A., Illnerov H. Hypothalamic melatonin-receptor sites revealed by autoradiography. Brain Res. 435: 359, 1987.

    PubMed  CAS  Google Scholar 

  183. Rasmussen D.D. Diurnal modulation of rat hypothalamic gonadotropin-releasing hormone (GnRH) release by melatonin in vitro. Proc. Soc. Neurosci. Mtg. 15: 1341, 1989 (Abstract).

    Google Scholar 

  184. Dubey A.K., Cameron J.L., Steiner R.A., Plant T.M. Inhibition of gonadotropin secretion in castrated male Rhesus monkeys (Macaca mulatta) induced by dietary restriction: analogy with the prepubertal haitus of gonadotropin release. Endocrinology 118: 518, 1986.

    PubMed  CAS  Google Scholar 

  185. Frisch R.E. Body weight and reproduction. Science 246: 432, 1989.

    PubMed  CAS  Google Scholar 

  186. Cameron J.L., Nosbisch C. Slowing of pulsatile LH and testosterone secretion during short-term fasting in adult male Rhesus monkeys (Macaca mulatta). Proc. Endocrine Soc. Mtg. 72, 1989.

  187. Dyer R.G., Mansfield S., Corbet H., Dean A.D.P. Fasting impairs LH secretion in female rats by activating an inhibitory opioid pathway. J. Endocrinol. 105: 91, 1985.

    PubMed  CAS  Google Scholar 

  188. Marshall J.F., Rowland N., Antelman S.M., Edwards D.J. Hypothalamic hyperphagia prevented by destruction of brain dopamine-containing neurons. In: Usdin E., Kopin I.J., Barchas J. (Eds.), Catecholamines: Basic and Clinical Frontiers. Pergamon Press, New York, 1978, p. 1617.

    Google Scholar 

  189. Morley J.E. Neuropeptide regulation of appetite and weight. Endocr. Rev. 8: 256, 1987.

    PubMed  CAS  Google Scholar 

  190. Karsch F.J., Cummins J.T., Thomas G.B., Clarke I.J. Steroid feedback inhibition of pulsatile secretion of gonadotropin-releasing hormone in the ewe. Biol. Reprod. 36: 1207, 1987.

    PubMed  CAS  Google Scholar 

  191. Karsch F.J., Bittman E.L., Foster D.L., Goodman R.L., Legan S.J., Robinson J.E. Neuroendocrine basis of seasonal reproduction. Rec. Prog. Horm. Res. 40: 185, 1984.

    PubMed  CAS  Google Scholar 

  192. Ebling F.J.P., Lincoln G.A. Endogenous opioids and the control of seasonal LH secretion in Soay rams. J. Endocrinol. 107: 341, 1985.

    PubMed  CAS  Google Scholar 

  193. Lincoln G.A., Ebling F.J.P., Martin G.B. Endogenous opioid control of pulsatile LH secretion in rams: modulation by photoperiod and gonadal steroids. J. Endocrinol. 115: 425, 1987.

    PubMed  CAS  Google Scholar 

  194. Horton R.J.E., Francis H., Clarke I.J. Seasonal and steroid-dependent effects on the modulation of LH secretion in the ewe by intracerebroventricularly administered β-endorphin or naloxone. J. Endocrinol. 122: 509, 1989.

    PubMed  CAS  Google Scholar 

  195. Roberts A.C., Hastings M.H., Martensz N.D., Herbert J. Naloxone-induced secretion of LH in the male Syrian hamster: modulation by photoperiod and gonadal steroids. J. Endocrinol. 106: 243, 1985.

    PubMed  CAS  Google Scholar 

  196. Goodman R.L. Functional organization of the catecholaminergic neural systems inhibiting luteinizing hormone secretion in anestrous ewes. Neuroendocrinology 50: 406, 1989.

    PubMed  CAS  Google Scholar 

  197. Steger R.W., Bartke A., Goldman B.D. Alterations in neuroendocrine function during photoperiod induced testicular atrophy and recrudescence. Biol. Reprod. 26: 437, 1982.

    PubMed  CAS  Google Scholar 

  198. Vriend J. Dopaminergic and serotonergic correlates of melatonin action: effects on prolactin (PRL) and luteinizing hormone (LH) in the Syrian hamster. Proc. Endocrine Soc. Mtg. 71: 66, 1989 (Abstract).

    Google Scholar 

  199. Meyer S.L., Goodman R.L. Neurotransmitters involved in mediating the steroid-dependent suppression of pulsatile luteinizing hormone secretion in anestrous ewes: effects of receptor antagonists. Endocrinology 116: 2054, 1985.

    PubMed  CAS  Google Scholar 

  200. Trentini G.P., Mess B., De Gaetani C.F., Ruzsas Cs. Effect of melatonin on induction of ovulation in the light-induced constant estrous-anovulatory syndrome and possible role of the brain serotonergic system. J. Endocrinol. Invest. 1: 305, 1978.

    PubMed  CAS  Google Scholar 

  201. Blask M.S., Mann D.R. Antigonadotrophic and prolactin inhibitory effects of melatonin in anosmic rats. Neuroendocrinology 29: 406, 1979.

    PubMed  CAS  Google Scholar 

  202. Blask D.E., Nodelman J.L., Leadem C.A., Richardson B.A. Influence of exogenously administered melatonin on the reproductive system and prolactin levels in underfed male rats. Biol. Reprod. 22: 507, 1980.

    PubMed  CAS  Google Scholar 

  203. Reiter R.J., Petterborg L.J., Trakulrungsi C., Trakulrungsi W.K. Surgical removal of the olfactory bulbs increases sensitivity of the reproductive system of female rats to the inhibitory effects of late afternoon melatonin injections. J. Exp. Zool. 212: 47, 1980.

    PubMed  CAS  Google Scholar 

  204. Smith M.S. Role of prolactin in regulating gonadotropin secretion and gonad function in female rats. Fed. Proc. 39: 2571, 1980.

    PubMed  CAS  Google Scholar 

  205. Devorshak-Harvey E., Bona-Gallo A., Gallo R.V. Endogenous opioid peptide regulation of pulsatile luteinizing hormone secretion during pregnancy in the rat. Neuroendocrinology 46: 369, 1987.

    PubMed  CAS  Google Scholar 

  206. Wardlaw S.L., Frantz A.G. Brain β-endorphin during pregnancy, parturition, and the postpartum period. Endocrinology 113: 1664, 1983.

    PubMed  CAS  Google Scholar 

  207. Yen S.S.C. Prolactin in human reproduction. In: Yen S.S.C., Jaffe R.B. (Eds.), Reproductive Endocrinology. Physiology, Pathophysiology and Clinical Management, ed. 2. W.B. Saunders Company, Philadelphia, 1986, p. 237.

    Google Scholar 

  208. Devorshak-Harvey E., Bona-Gallo A., Gallo R.V. Declining plasma progesterone levels eliminate endogenous opioid peptide suppression of LH pulse frequency on day 22 of gestation in the rat. Neuroendocrinology 48: 584, 1988.

    PubMed  CAS  Google Scholar 

  209. Rund L.A., Thompson F.N., Byerley D.J., Kiser T.E. Failure of naloxone to stimulate luteinizing hormone secretion during pregnancy and steroid treatment of ovariectomized beef cows. Biol. Reprod. 42: 619, 1990.

    PubMed  CAS  Google Scholar 

  210. Grossman A., Stubbs W.A., Gaillard R.C., Delitala G., Rees L.H., Besser G.M. Studies of the opiate control of prolactin. Clin. Endocrinol. (Oxf.) 14: 381, 1981.

    CAS  Google Scholar 

  211. Liu J., Rebar R.W., Yen S.S.C. Neuroendocrine control of the postpartum period. Clin. Perinatol. 10: 723, 1983.

    PubMed  Google Scholar 

  212. Brun de Le R., del Pozo E., Le Grandi P. Prolactin inhibition and suppression of puerperal lactation by Br-ergocryptine (CB-154): A comparison with estrogen. Obstet. Gynecol. 41: 884, 1973.

    Google Scholar 

  213. Ishizuka B., Quigley M.E., Yen S.S.C. Postpartum hypogonadotrophinism: evidence for increased opioid inhibition. Clin. Endocrinol. (Oxf.) 20: 573, 1984.

    CAS  Google Scholar 

  214. Howie P.W., McNeilly A.S., Houston M.J. Fertility after childbirth: postpartum ovulation and menstruation in bottle and breast feeding mothers. Clin. Endocrinol. (Oxf.) 17: 323, 1982.

    CAS  Google Scholar 

  215. Wise M.E. Gonadotropin-releasing hormone secretion during the postpartum anestrous period of the ewe. Biol. Reprod. 43: 719, 1990.

    PubMed  CAS  Google Scholar 

  216. Schmauss C., Emrich H.M. Dopamine and the action of opiates: a reevaluation of the dopamine hypothesis of schizophrenia with special consideration of the endogenous opioids in the pathogenesis of schizophrenia. Biol. Psychiatry 20: 1211, 1985.

    PubMed  CAS  Google Scholar 

  217. Baldessarini R.J. Drugs and the treatment of psychiatric disorders. In: Goodman Gilman A., Goodman L.S., Rail T.W., Murad F. (Eds.), The Pharmacological Basis of Therapeutics, ed. 7. Macmillan Publishing Company, New York, 1985, p. 387.

    Google Scholar 

  218. Bunney W.E., van Kammen D.P., Post R.M., Garland B.L. A possible role for dopamine in schizophrenia and manic-depressive illness (a review of evidence). In: Usdin E., Kopin I.J., Barchas J. (Eds.), Catecholamines: Basic and Clinical Frontiers, Vol. 2. Pergamon Press, New York, 1989, p. 1807.

    Google Scholar 

  219. Fratta W., Fadda P., Martellotta M.C., Gessa G.L. Evidence for opioid-dopamine link in a new animal model of mania. Proc. Soc. Neurosci. Mtg. 14: 968, 1988 (Abstract).

    Google Scholar 

  220. Rasmussen D.D., Jakubowski M., Allen D.L., Roberts J.L. Hypothalamic POMC mRNA levels during recovery from chronic estradiol: dopaminergic mechanism? Proc. Soc. Neurosci. Mtg. 15: 1990 (Abstract).

  221. O’Donohue T.L., Dorsa D.M. The opiomelanotropinergic neuronal and endocrine systems. Peptides 3: 353, 1982.

    PubMed  Google Scholar 

  222. Checkley S.A., Beam J., Wieck A., Lightman S., Kumar R. Neuroendocrine Mechanisms and the Onset of Post Partum Psychosis. Proc. Int. Soc. PsychoNeuroEndocrinol. Mtg. 96, 1990 (Abstract).

  223. Yen S.S.C. Chronic anovulation caused by peripheral endocrine disorders. In: Yen S.S.C., Jaffe R.B. (Eds.), Reproductive Endocrinology. Physiology, Pathophysiology, and Clinical Management, ed. 2. W.B. Saunders Company, Philadelphia, 1986, p. 441.

    Google Scholar 

  224. Quigley M.E., Rakoff J.S., Yen S.S.C. Increased luteinizing hormone sensitivity to dopamine inhibition in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 52: 231, 1981.

    PubMed  CAS  Google Scholar 

  225. Ferrari C., Rampini P., Malinverni A., Scarduelli C., Benco R., Caldara R., Barbieri C., Testori G., Crosignani P.G. Inhibition of luteinizing hormone release by dopamine infusion in healthy women and in various pathophysiological conditions. Acta Endocrinol. (Copenh.) 97: 436, 1981.

    CAS  Google Scholar 

  226. Cumming D.C., Reid R.L., Quigley M.E., Rebar R.W., Yen S.S.C. Evidence for decreased endogenous dopamine and opioid inhibitory influences on LH secretion in polycystic ovary syndrome. Clin. Endocrinol. (Oxf.) 20: 643, 1984.

    CAS  Google Scholar 

  227. Barletta C., Vagiri D., Scavo D. Decreased inhibitory opioid influences on luteinizing hormone release in “typical” polycystic ovary syndrome. Neuroendocrinology 52(Suppl. 1): 90, 1990 (Abstract).

    Google Scholar 

  228. Rosen G.F., Lobo R.A. Further evidence against dopamine deficiency as the cause of inappropriate gonadotropin secretion in patients with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 65: 891, 1987.

    PubMed  CAS  Google Scholar 

  229. Luciano A.A., Chapler F.K., Sherman B.M. The hyperprolactinemic polycystic ovary syndrome may not be a distinct entity. Fertil. Steril. 38: 549, 1984.

    Google Scholar 

  230. Corenblum B., Taylor P.J. Hyperprolactinemia in polycystic ovary syndrome. Fertil. Steril. 41: 19, 1982.

    Google Scholar 

  231. Shoupe D., Lobo R.A. Evidence for altered catecholamine metabolism in polycystic ovary syndrome. Am. J. Obstet. Gynecol. 150: 566, 1984.

    PubMed  CAS  Google Scholar 

  232. Brawer J.R., Naftolin F., Martin J., Sonnenschein C. Effects of a single injection of estradiol valerate on the hypothalamic arcuate nucleus and on reproductive function in the female rat. Endocrinology 103: 501, 1978.

    PubMed  CAS  Google Scholar 

  233. Schulster A., Farookhi R., Brawer J.R. Polycystic ovarian condition in estradiol valeratetreated rats: spontaneous changes in characteristic endocrine features. Biol. Reprod. 31: 587, 1984.

    PubMed  CAS  Google Scholar 

  234. Sarkar D.K., Gottschall P.E., Meites J. Damage to hypothalamic neurons is associated with development of prolactin-secreting pituitary tumors. Science 218: 684, 1982.

    PubMed  CAS  Google Scholar 

  235. Aono T., Miyake A., Yasuda T., Kolke K., Kurachi K. Restoration of estrogen-positive feedback on LH release by bromocriptine in hyperprolactinemic patients with galactorrhea-amenorrhea. Acta Endocrinol. (Copenh.) 91: 591, 1979.

    CAS  Google Scholar 

  236. King T.S., Carrillo A.J., Morgan W.W. Hyperprolactinemia attenuates ovarian steroid stimulation of region-specific hypothalamic serotonin synthesis and luteinizing hormone release in ovariectomized rats. Neuroendocrinology 43: 597, 1986.

    PubMed  CAS  Google Scholar 

  237. Cohen-Becker I.R., Selmanoff M., Wise P.M. Inhibitory effects of exogenously induced hyperprolactinemia on the endogenous cyclic release of luteinizing hormone and prolactin in the estrogen-primed ovariectomized rat. Endocrinology 119: 1718, 1986.

    PubMed  CAS  Google Scholar 

  238. Kooy A., Weber R.F.A., Ooms M.P., Vreeburg J.T.M. Effects of the new prolactin-producing tumor 7315b on gonadotropin secretion in adult male and female rats. J. Endocrinol. 12: 261, 1989.

    Google Scholar 

  239. Dluzen D.E., Ramirez V.D. In vivo activity of LH-releasing hormone pulse generator in castrated and intact male rats. J. Endocrinol. 107: 331, 1985.

    PubMed  CAS  Google Scholar 

  240. Kao L.W.L., Weisz J. Release of gonadotrophin-releasing hormone (GnRH) from isolated, perifused medial-basal hypothalamus by melatonin. Endocrinology 100: 1723, 1977.

    PubMed  CAS  Google Scholar 

  241. Kooy A., de Greet W.J., Vreeburg J.T.M., Hackeng W.H.L., Ooms M.P., Lamberts S.W.J., Weber R.F.A. Evidence for the involvement of corticotropin-releasing factor in the inhibition of gonadotropin release induced by hyperprolactinemia. Neuroendocrinology 51: 261, 1990.

    PubMed  CAS  Google Scholar 

  242. MacLusky N.J., Naftolin F., Leranth C. Immunocytochemical evidence for direct synaptic connections between corticotrophin-releasing factor (CRF) and gonadotrophin-releasing hormone (GnRH)-containing neurons in the preoptic area of the rat. Brain Res. 439: 391, 1988.

    PubMed  CAS  Google Scholar 

  243. Reame N.E., Saunder S.E., Case G.D., Kelch R.P., Marshall J.C. Pulsatile gonadotropin secretion in women with hypothalamic amenorrhea: evidence that reduced frequency of gonadotropin-releasing hormone secretion is the mechanism of persistent anovulation. J. Clin. Endocrinol. Metab. 61: 851, 1985.

    PubMed  CAS  Google Scholar 

  244. Quigley M.E., Sheehan K.L., Casper R.F., Yen S.S.C. Evidence for an increased dopaminergic and opioid activity in patients with hypothalamic hypogonadotropic amenorrhea. J. Clin. Endocrinol. Metab. 50: 949, 1980.

    PubMed  CAS  Google Scholar 

  245. Berga S.L., Mortola J.F., Girton L., Suh B., Laughlin G., Pham P., Yen S.S.C. Neuroendocrine aberrations in women with functional hypothalamic amenorrhea. J. Clin. Endocrinol. Metab. 68: 301, 1989.

    PubMed  CAS  Google Scholar 

  246. Gala R.R. The physiology and mechanisms of the stress-induced changes in prolactin secretion in the rat. Life Sci. 46: 1407, 1990.

    PubMed  CAS  Google Scholar 

  247. Nikolarakis K.E., Almeida O.F.X., Herz A. Hypothalamic opioid receptors mediate the inhibitory actions of corticotropin-releasing hormone on luteinizing hormone release: further evidence from a morphine-tolerant animal model. Brain Res. 450: 360, 1988.

    PubMed  CAS  Google Scholar 

  248. Gambacciani M., Yen S.S.C., Rasmussen D.D. GnRH release from the mediobasal hypothalamus: in vitro inhibition by corticotropin-releasing factor. Neuroendocrinology 43: 533, 1986.

    PubMed  CAS  Google Scholar 

  249. Gindoff P.R., Ferin M. Endogenous opioid peptides modulate the effect of corticotropin-releasing factor on gonadotropin release in the primate. Endocrinology 121: 837, 1987.

    PubMed  CAS  Google Scholar 

  250. Almeida O.F.X., Nikolarakis K.E., Herz A. Evidence for the involvement of endogenous opioids in the inhibition of luteinizing hormone by corticotropin-releasing factor. Endocrinology 122: 1034, 1988.

    PubMed  CAS  Google Scholar 

  251. Barbarino A., De Marinis L., Tofani A., Delia Casa S., D’Amico C., Mancini A., Corsello S.M., Sciuto R., Barini A. Corticotropin-releasing hormone inhibition of gonadotropin release and the effect of opioid blockade. J. Clin. Endocrinol. Metab. 68: 523, 1989.

    PubMed  CAS  Google Scholar 

  252. Ono N., Lumpkin M.D., Samson W.K., McDonald J.K., McCann S.M. Intrahypothalamic action of corticotropin-releasing factor (CRF) to inhibit growth hormone and LH release in the rat. Life Sci. 35: 1117, 1984.

    PubMed  CAS  Google Scholar 

  253. Petraglia F., Sutton S., Vale W., Plotsky P. Corticotropin-releasing factor decreases plasma luteinizing hormone levels in female rats by inhibiting gonadotropin-releasing hormone release into hypophysial-portal circulation. Endocrinology 120: 1083, 1987.

    PubMed  CAS  Google Scholar 

  254. Tilders F.J.H., Berkenbosch F., de Goeij D.C.E. Differential effects of stress on turnover of corticotropin releasing factor (CRF) and vasopressin (AVP) in the median eminence of rats. Proc. Endocrine Soc. Mtg. 70: 249, 1988 (Abstract).

    Google Scholar 

  255. Haas D.A., George S.R. Single or repeated mild stress increases synthesis and release of hypothalamic corticotropin-releasing factor. Brain Res. 461: 230, 1988.

    PubMed  CAS  Google Scholar 

  256. Imaki T., Nahon J.L., Rivier C., Sawchenko P., Vale W. Effect of chronic stress on the level of corticotropinreleasing factor (CRF) mRNA in rat brain. Proc. Soc. Neurosci. Mtg. 14: 446, 1988 (Abstract).

    Google Scholar 

  257. Calogero A.E., Galluci W.T., Chrousos G.P., Gold P.W. Catecholamine effects upon rat hypothalamic corticotropin-releasing hormone secretion in vitro. J. Clin. Invest. 82: 839, 1988.

    PubMed Central  PubMed  CAS  Google Scholar 

  258. Farah J.M., Mueller G.P. A D-2 dopaminergic agonist stimulates secretion of anterior pituitary immunoreactive, β-endorphin in rats. Neuroendocrinology 50: 26, 1989.

    PubMed  CAS  Google Scholar 

  259. Borowsky B., Kuhn C.M. Central D1 and D2 dopamine receptors stimulate hypothalamic-pituitary-adrenal (HPA) activity. Proc. Soc. Neurosci. Mtg. 16: 1178, 1990 (Abstract).

    Google Scholar 

  260. Hornby P.J., Piekut D.T. Opiocortin and catecholamine input to CRF-immunoreactive neurons in rat forebrain. Peptides 10: 1139, 1989.

    PubMed  CAS  Google Scholar 

  261. Nikolarakis K.E., Almeida O.F.X., Sirinathsinghji D.J.S., Herz A. Concomitant changes in the in vitro and in vivo release of opioid peptides and luteinizing hormone-releasing hormone from the hypothalamus following blockade of receptors for corticotropin-releasing factor. Neuroendocrinology 47: 545, 1988.

    PubMed  CAS  Google Scholar 

  262. Biller B.M.K., Federoff H.J., Koenig J.I., Klibanski A. Abnormal cortisol secretion and responses to corticotropin-releasing hormone in women with hypothalamic amenorrhea. J. Clin. Endocrinol. Metab. 70: 311, 1990.

    PubMed  CAS  Google Scholar 

  263. Rasmussen D.D. Estrogen and progesterone effects on β-endorphin and αMSH concentrations and ratios in individual hypothalamic nuclei. Neuroendocrinology 52(Suppl. 1): 110, 1990 (Astract).

    Google Scholar 

  264. Haas D.A., George S.R. Gonadal regulation of corticotropin-releasing factor immunoreactivity in hypothalamus. Brain Res. Bull. 20: 361, 1988.

    PubMed  CAS  Google Scholar 

  265. Haas D.A., George S.R. Estradiol or ovariectomy decreases CRF synthesis in hypothalamus. Brain Res. Bull. 23: 215, 1989.

    PubMed  CAS  Google Scholar 

  266. Bohler H.C.L., Zoeller R.T., Grino M., Weber R., Merriam G.R. Changes in corticotropin releasing hormone (CRH) mRNA in hypothalamic regions in the rat estrous cycle. Proc. Soc. Gynecol. Invest. 122, 1990 (Abstract).

  267. Aschheim P. Résultats fournis par la greffe hétérochrome des ovaries dans l’étude de la régulation hypothalamohypophyso-ovarienne de la ratte sénile. Gerontologia 10: 65, 1964.

    PubMed  Google Scholar 

  268. Peng M.T., Huang H.H. Aging of hypothalamic-pituitary-ovarian function in the rat. Fert. Steril. 23: 535, 1972.

    CAS  Google Scholar 

  269. Demarest K.T., Moore K.E., Riegle G.D. Dopaminergic neuronal function, anterior pituitary dopamine content, and serum concentrations of prolactin, luteinizing hormone and progesterone in the aged female rat. Brain Res. 247: 347, 1982.

    PubMed  CAS  Google Scholar 

  270. Demarest K.T., Riegle G.D., Moore K.E. Characteristics of dopaminergic neurons in the aged male rat. Neuroendocrinology 31: 222, 1980.

    PubMed  CAS  Google Scholar 

  271. Gudelsky G.A., Nansel D.D., Porter J.C. Dopaminergic control of prolactin secretion in the aging male rat. Brain Res. 204: 446, 1981.

    PubMed  CAS  Google Scholar 

  272. Estes K.S., Simpkins J.W. Age-related alterations in catecholamine concentrations in discrete preoptic area and hypothalamic regions of the male rat. Brain Res. 194: 556, 1980.

    PubMed  CAS  Google Scholar 

  273. Reymond M.J., Porter J.C. Secretion of hypothalamic dopamine into pituitary stalk blood of aged female rats. Brain Res. Bull. 7: 69, 1981.

    PubMed  CAS  Google Scholar 

  274. Gregerson K.A., Selmanoff M. Changes in the kinetics of [3H] dopamine release from median eminence and striatal synaptosomes during aging. Endocrinology 126: 228, 1990.

    PubMed  CAS  Google Scholar 

  275. Miller M.M., Joshi D., Billiar R.B., Nelson J.F. Reduced numbers of hypothalamic beta-endorphin (B-END) and LHRH neurons in aged female C57BL/6J mice. Proc. Soc. Neurosci. Mtg. 15: 1385, 1989 (Abstract).

    Google Scholar 

  276. Nelson J.F., Bender M., Schachter B.S. Age-related changes in proopiomelanocortin messenger ribonucleic acid levels in hypothalamus and pituitary of female C57B/6J mice. Endocrinology 123: 340, 1988.

    PubMed  CAS  Google Scholar 

  277. Barden N., Dupont A., Fabrie F., Merand Y., Rouleau D., Vaudry H., Boissier J.R. Age-dependent changes in beta-endorphin content of discrete rat brain nuclei. Brain Res. 208: 209, 1981.

    PubMed  CAS  Google Scholar 

  278. Gruenewald D.A., Matsumoto A.M. Age-related decrease in proopiomelanocortin (POMC) gene expression in the arcuate nucleus (ARC) of the male rat. Proc. Soc. Neurosci. Mtg. 15: 343, 1989 (Abstract).

    Google Scholar 

  279. Reid R.L., Quigley M.E., Yen S.S.C. The disappearance of opioidergic regulation of gonadotropin secretion in postmenopausal women. J. Clin. Endocrinol. Metab. 57: 1107, 1983.

    PubMed  CAS  Google Scholar 

  280. Melis G.B., Cagnacci A., Gambacciani M., Paoletti A.M., Caffi T., Fioretti P. Chronic bromocriptine administration restores luteinizing hormone response to naloxone in postmenopausal women. Neuroendocrinology 47: 159, 1988.

    PubMed  CAS  Google Scholar 

  281. Sopelak V.M., Butcher R.L. Contribution of the ovary versus hypothalamus-pituitary to termination of estrous cycles in aging rats using ovarian transplants. Biol. Reprod. 27: 29, 1982.

    PubMed  CAS  Google Scholar 

  282. Huang H.H., Marshall S., Meites J. Induction of estrous cycles in old non-cyclic rats by progesterone, ACTH, ether stress or I-dopa. Neuroendocrinology 20: 21, 1976.

    PubMed  CAS  Google Scholar 

  283. Wiggins O, Wise P.M., Ratner A. Differences in the response pattern of aged female rats to treatment with Lergotrile Mesylate. Proc. Soc. Exp. Biol. Med. 179: 173, 1985.

    PubMed  CAS  Google Scholar 

  284. Scoccia B., Schneider A.B., Marut E.L., Scommegna A. Pathological hyperprolactinemia suppresses hot flashes in menopausal women. J. Clin. Endocrinol. Metab. 66: 868, 1988.

    PubMed  CAS  Google Scholar 

  285. Brawer J., Schipper H., Robaire B. Effects of long term androgen and estradiol exposure on the hypothalamus. Endocrinology 112: 194, 1983.

    PubMed  CAS  Google Scholar 

  286. Estes K.S., Simpkins J.W. Age-related alterations in dopamine and norepinephrine activity within microdissected brain regions of ovariectomized Long-Evans rats. Brain Res. 298: 209, 1984.

    PubMed  CAS  Google Scholar 

  287. Lloyd J.M., Wise P.M. Age-related changes in proopiomelanocortin (POMC) gene expression in the arcuate nucleus of ovariectomized rats are independent of reproductive status. Proc. Soc. Neurosci. Mtg. 16: 395, 1990 (Abstract).

    Google Scholar 

  288. Scarbrough K., Weiland N.G., Lloyd J.M., Larson G.H., Chiu S., Wise P.M. Aging influences the diurnal pattern and the level of proopiomelanocortin (POMC) gene expression in the arcuate nucleus of ovariectomized (OVX) and estradiol (E2)-treated rats. Proc. Soc. Neurosci. Mtg. 16: 952, 1990 (Abstract).

    Google Scholar 

  289. Day J.R., Morales T.H., Lu J.K.H. Luteinizing hormone increase prior to the onset of irregular cyclicity in aging female rats. Proc. Endocrine Soc. Mtg. 120, 1989 (Abstract).

  290. Scarbrough K., Wise P.M. Age-related changes in pulsatile luteinizing hormone release precede the transition to estrous acyclicity and depend upon estrous cycle history. Endocrinology 126: 884, 1990.

    PubMed  CAS  Google Scholar 

  291. Nass T.E., LaPolt P.S., Judd H.L., Lu J.K.H. Alterations in ovarian steroid and gonadotrophin secretion preceding the cessation of regular oestrous cycles in ageing female rats. J. Endocrinol. 100: 43, 1984.

    PubMed  CAS  Google Scholar 

  292. Wise P.M. Influence of estrogen on aging of the central nervous system: its role in declining female reproductive function. In: Menopause: evaluation, treatment, and health concerns. Alan R. Liss, Inc., 1989, p. 53.

  293. Marshall J.C., Reed P.I., Gordon H. Luteinizing hormone secretion in patients presenting with post-oral contraceptive amenorrhoea: evidence for a hypothalamic feedback abnormality. Clin. Endocrinol. (Oxf.) 5: 131, 1976.

    CAS  Google Scholar 

  294. Casper R.F., Yen S.S.C. Neuroendocrinology of menopausal flushes: an hypothesis of flush mechanism. Clin. Endocrinol. (Oxf.) 22: 293, 1985.

    CAS  Google Scholar 

  295. Simpkins J.W., Katovich M.J., Cheng Song I. Similarities between morphine withdrawal in the rat and the menopausal hot flush. Life Sci. 32: 1957, 1983.

    PubMed  CAS  Google Scholar 

  296. Katovich M.J., Simpkins J.W. Role of dopamine in an animal model for the hot flush. In: Cooper, Lomax, Schonbaum, Veale (Eds.), Homeostasis and Thermal Stress. Karger, Basel, 1986, p. 123.

    Google Scholar 

  297. Gabriel S.M., Simpkins J.W., Millard W.J. Changes in anterior pituitary hormone secretion and hypothalamic catecholamine metabolism during morphine withdrawal in the female rat. Brain Res. 346: 15, 1985.

    PubMed  CAS  Google Scholar 

  298. Ritzmann R.F., Lee J.M., Fields J.Z. Peptide inhibition of morphine-induced dopaminergic supersensitivity. Life Sci. 31: 2287, 1982.

    PubMed  CAS  Google Scholar 

  299. Adler M.W., Geller E.B., Rosow C.E., Cochin J. The Opioid System and Temperature Regulation. J. Immunol. 140: 429, 1988.

    Google Scholar 

  300. Simpkins J.W., Taylor S.T., Gabriel S.M., Katovich M.J., Millard W.J. Evidence that chronic hyperprolactinemia affects skin temperature regulation through an opioid mechanism. Neuroendocrinology 39: 321, 1984.

    PubMed  CAS  Google Scholar 

  301. Cagnacci A., Melis G.B., Soldani R., Gambacciani M., Paoletti A.M., Fioretti P. Regulation of body temperature in postmenopausal women: interactions between bromocriptine and the endogenous opioid system. Life Sci. 44: 1395, 1989.

    PubMed  CAS  Google Scholar 

  302. Zichella L., Falaschi P., Fioretti P., Melis G.B., Cagnacci A., Gambacciani M., Mancini S. Effects of different dopamine agonists and antagonists on post-menopausal hot flushes. Maturitas 8: 229, 1986.

    PubMed  CAS  Google Scholar 

  303. Sawyer C.H., Clifton D.K. Aminergic innervation of the hypothalamus. Fed. Proc. 39: 2889, 1980.

    PubMed  CAS  Google Scholar 

  304. Terasawa E. What is the LHRH pulse generator? A hypothesis. In: Sagara Y., Seto K. (Eds.), Pheromones and Reproduction. The Parthenon Publishing Group, Park Ridge, New Jersey, 1989, p. 77.

    Google Scholar 

  305. Thind K.K., Goldsmith P.C. Infundibular gonadotropin-releasing hormone neurons are inhibited by direct opioid and autoregulatory synapses in juvenile monkeys. Neuroendocrinology 47: 203, 1988.

    PubMed  CAS  Google Scholar 

  306. Pelletier G. Demonstration of contacts between neurons staining for LHRH in the preoptic area of the rat brain. Neuroendocrinology 46: 457, 1987.

    PubMed  CAS  Google Scholar 

  307. Weiner R.I., Goldsmith P.C., Windle J.J., Mellon P.L. Cell biology and regulation of GnRH cell lines derived from transgenic mice. Neuroendocrinology 52(Suppl. 1): 21, 1990 (Abstract).

    Google Scholar 

  308. Barker J.L., Smith T.G. Jr. Bursting pacemaker activity in a peptidergic and peptide-sensitive neuron. In: Baker J.L., Smith T.G. Jr. (Eds.), The Role of Peptides in Neuronal Function. Dekker, New York, 1980, p. 189.

    Google Scholar 

  309. Loose M.D., Kelly M.J. Opioids act at μ-receptors to hyperpolarize arcuate neurons via an inwardly rectifying potassium conductance. Brain Res. 513: 15, 1990.

    PubMed  CAS  Google Scholar 

  310. Williams C.L., Nishihara M., Thalabard J.-C., O’Byrne K.T., Grosser P.M., Hotchkiss J., Knobil E. Duration and frequency of multiunit electrical activity associated with hypothalamic gonadotropin releasing hormone pulse generator in the Rhesus monkey: differential effects of morphine. Neuroendocrinology 52: 225, 1990.

    PubMed  CAS  Google Scholar 

  311. Adler B.A., Crowley W.R. Evidence for τ-aminobutyric acid modulation of ovarian hormonal effects on luteinizing hormone secretion and hypothalamic catecholamine activity in the female rat. Endocrinology 118: 91, 1986.

    PubMed  CAS  Google Scholar 

  312. Bigazzi M., Nardi E. Prolactin and relaxin: antagonism of the spontaneous motility of the uterus. J. Clin. Endocrinol. Metab. 53: 665, 1981.

    PubMed  CAS  Google Scholar 

  313. Rudzik A.D., Miller J.W. The mechanism of uterine inhibitory action of relaxin-containing ovarian extracts. J. Pharmacol. Exp. Ther. 138: 82, 1962.

    PubMed  CAS  Google Scholar 

  314. Porter D.B., Downing S.J., Bradshaw J.M.C. Inhibition of oxytocin or prostaglandin F2α-driven activity by relaxin in the rat is oestrogen-dependent. J. Endocrinol. 89: 399, 1981.

    PubMed  CAS  Google Scholar 

  315. Chamley W.A., Bagoyo M.M., Bryant-Greenwood G.D. In vitro response of relaxin-treated rat uterus to prostaglandins and oxytocin. Prostaglandins 14: 763, 1977.

    PubMed  CAS  Google Scholar 

  316. Estes K.S., Simpkins J.W., Kalra S.P. Resumption with Clonidine of pulsatile LH release following acute norepinephrine depletion in ovariectomized rats. Neuroendocrinology 35: 56, 1982.

    PubMed  CAS  Google Scholar 

  317. Phelps C.P., Kalra P.S. Pulsatile LHRH release in vitro after surgical disconnection of the mediobasal hypothalamus (MBH) in vivo. Proc. Endo. Soc. Mtg. 79: 24, 1988 (Abstract).

    Google Scholar 

  318. Rasmussen D.D. Physiological interactions of the basic rest-activity cycle of the brain: pulsatile luteinizing hormone secretion as a model. Psychoneuroendocrinology 4: 389, 1986.

    Google Scholar 

  319. Wang W.K., Jenq L.S., Chiang Y., Chien N.K. Inhibition of dopamine biosynthesis by gonadotropin-releasing hormone in rat. Nature 296: 354, 1982.

    PubMed  CAS  Google Scholar 

  320. Terasawa E., Krook C., Hei D.L., Gearing M., Schultz N.J., Davis G.A. Norepinephrine is a possible neurotransmitter stimulating pulsatile release of luteinizing hormone releasing hormone in the Rhesus monkey. Endocrinology 123: 1808, 1988.

    PubMed  CAS  Google Scholar 

  321. Terasawa E., Woller M.J., Gearing M., Gore A.S. Role of neuropeptide-Y and norepinephrine in control of pulsatile GnRH release in ovariectomized monkeys. Neuroendocrinology 52(Suppl. 1): 88, 1990 (Abstract).

    Google Scholar 

  322. Rasmussen D.D. Pulsatile release of immunoreactive β-endorphin (END) from the human mediobasal hypothalamus (MBH) in vitro. Proc. Soc. Gynecol. Invest. 87, 1989 (Abstract).

  323. Frautschy S.A., Sarkar D.K. A possible role for beta-endorphin (B-EP) in modulation of the pulsatile secretion of luteinizing hormone releasing hormone (LHRH) in ovariectomized rats. Proc. Endo. Soc. Mtg. 70: 319, 1988 (Abstract).

    Google Scholar 

  324. Ramon y Cajal S. Recollections of my life. M.I.T. Press, Cambridge, 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rasmussen, D.D. The interaction between mediobasohypothalamic dopaminergic and endorphinergic neuronal systems as a key regulator of reproduction: an hypothesis. J Endocrinol Invest 14, 323–352 (1991). https://doi.org/10.1007/BF03346826

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03346826

Key-words

Navigation