Skip to main content

Advertisement

Log in

Thyroid safety in patients treated with liraglutide

  • Review Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

During the last years, various novel anti-diabetic drugs have considerably enriched the therapeutic armamentarium for subjects with Type 2 diabetes. In the meantime, much interest has recently been focused on the potential cardiovascular and oncological adverse effects of these new therapies. As to glucagon-like peptide 1 (GLP-1) analogs, medullary thyroid tumors were reported to be more common in rodent toxicology studies with liraglutide, although the relevance of this finding in humans has been questioned. Analyses of sequential changes in calcitonin levels in several thousands of subjects did not reveal a relationship between liraglutide therapy and plasma calcitonin. Furthermore, no medullary thyroid cancer has been detected in humans taking liraglutide. Nevertheless, the long-term consequences of sustained GLP-1 receptor activation in the human thyroid remain unknown and deserve further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kieffer TJ, Habener JL. The glucagon-like peptides. Endocr Rev 1999, 20: 876–913.

    Article  PubMed  CAS  Google Scholar 

  2. Drucker DJ. The biology of incretin hormones. Cell Metab 2006, 3: 153–65.

    Article  PubMed  CAS  Google Scholar 

  3. Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev 2007, 87: 1409–39.

    Article  PubMed  CAS  Google Scholar 

  4. Novo Nordisk. Liraglutide (injection) for the treatment of patients with type 2 diabetes. NDA 22-341. Briefing document. Endocrine and Metabolic Drug Advisory Committee, 2 April 2009. http://www.fda.gov/downloads/advisorycommittees/committeesmeetingmaterials/drugs/endocrinologicandmetabolicdrugsadvisorycommittee/ucm148659.pdf. Accessed January 4, 2012.

  5. Inzucchi SE, Bergenstal RM, Buse JB, et al; American Diabetes Association (ADA); European Association for the Study of Diabetes (EASD). Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2012, 35: 1364–79.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Rodbard HW, Jellinger PS, Davidson JA, et al. Statement by an American College of Clinical Endocrinologists/American College of Endocrinology consensus panel on type 2 diabetes: an algorithm for glycemic control. Endocr Pract 2009, 15: 540–59.

    Article  PubMed  Google Scholar 

  7. Ceriello A, Gallo M, Armentano V, Perriello G, Gentile S, De Micheli A; Associazione Medici Diabetologi. Personalizing treatment in type 2 diabetes: a self-monitoring of blood glucose inclusive innovative approach. Diabetes Technol Ther 2012, 14: 373–8.

    Article  PubMed  CAS  Google Scholar 

  8. Waugh N, Cummins E, Royle P, et al. Newer agents for blood glucose control in type 2 diabetes: systematic review and economic evaluation. Health Technol Assess 2010, 14: 1–248.

    Google Scholar 

  9. Lee WC, Conner C, Hammer M. Cost-effectiveness of liraglutide versus rosiglitazone, both in combination with glimepiride in treatment of type 2 diabetes in the US. Curr Med Res Opin 2011, 27: 897–906.

    Article  PubMed  CAS  Google Scholar 

  10. Shyangdan D, Cummins E, Royle P, Waugh N. Liraglutide for the treatment of type 2 diabetes. Health Technol Assess 2011, 15(Suppl 1): 77–86.

    PubMed  Google Scholar 

  11. Davies MJ, Chubb BD, Smith IC, Valentine WJ. Cost-utility analysis of liraglutide compared with sulphonylurea or sitagliptin, all as add-on to metformin monotherapy in Type 2 diabetes mellitus. Diabet Med 2012, 29: 313–20.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. McGill JB. Insights from the Liraglutide Clinical Development Program—the Liraglutide Effect and Action in Diabetes (LEAD) studies. Postgrad Med 2009, 121: 16–25.

    Article  PubMed  Google Scholar 

  13. Monami M, Marchionni N, Mannucci E. Glucagon-like peptide-1 receptor agonists in type 2 diabetes: a meta-analysis of randomized clinical trials. Eur J Endocrinol 2009, 160: 909–17.

    Article  PubMed  CAS  Google Scholar 

  14. Astrup A, Rössner S, Van Gaal L, et al; NN8022-1807 Study Group. Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet 2009, 374: 1606–16.

    Article  PubMed  CAS  Google Scholar 

  15. Wadden TA, Hollander P, Klein S, et al. Liraglutide Provides Weight Maintenance and Additional Weight Loss after Low Calorie Diet-Induced Weight Loss in Obese Subjects without Diabetes: The SCALE™ Maintenance Study. Diabetes 2011, 60: 1859–P. American Diabetes Association (ADA) 71st Scientific Sessions, San Diego, CA, 2011 (abstract).

    Article  CAS  Google Scholar 

  16. Monami M, Cremasco F, Lamanna C, et al. Glucagon-like peptide-1 receptor agonists and cardiovascular events: a meta-analysis of randomized clinical trials. Exp Diabetes Res 2011, 2011: 215764.

    PubMed Central  PubMed  Google Scholar 

  17. Bjerre Knudsen L, Madsen LW, Andersen S, et al. Glucagon-like Peptide-1 receptor agonists activate rodent thyroid C-cells causing calcitonin release and C-cell proliferation. Endocrinology 2010, 151: 1473–86.

    Article  PubMed  CAS  Google Scholar 

  18. Hoff AO, Catala-Lehnen P, Thomas PM, et al. Increased bone mass is an unexpected phenotype associated with deletion of the calcitonin gene. J Clin Invest 2002, 110: 1849–57.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Wang W, Lewin E, Olgaard K. Role of calcitonin in the rapid minute-to-minute regulation of plasma Ca2+ homeostasis in the rat. Eur J Clin Invest 2002, 32: 674–81.

    Article  PubMed  CAS  Google Scholar 

  20. Persson P, Grunditz T, Axelson J, Sundler F, Häkanson R. Chole-cystokinins but not gastrin-17 release calcitonin from thyroid C-cells in the rat. Regul Pept 1988, 21: 45–56.

    Article  PubMed  CAS  Google Scholar 

  21. Vitale G, Ciccarelli A, Caraglia M, et al. Comparison of two provocative tests for calcitonin in medullary thyroid carcinoma: omeprazole vs pentagastrin. Clin Chem 2002, 48: 1505–10.

    PubMed  CAS  Google Scholar 

  22. Kurosawa M, Sato A, Shiraki M, Takahashi Y. Secretion of calcitonin from the thyroid gland increases in aged rats. Arch Gerontol Geriatr 1988, 7: 229–38.

    Article  PubMed  CAS  Google Scholar 

  23. O’Toole K, Fenoglio-Preiser C, Pushparaj N. Endocrine changes associated with the human aging process: III. Effect of age on the number of calcitonin immunoreactive cells in the thyroid gland. Hum Pathol 1985, 16: 991–1000.

    Article  PubMed  Google Scholar 

  24. Hirsch PF, Baruch H. Is calcitonin an important physiological substance? Endocrine 2003, 21: 201–8.

    Article  PubMed  CAS  Google Scholar 

  25. Raue F, Frank-Raue K. Update multiple endocrine neoplasia type 2. Fam Cancer 2010, 9: 449–57.

    Article  PubMed  CAS  Google Scholar 

  26. Wolfe HJ, Delellis RA. Familial medullary thyroid carcinoma and C cell hyperplasia. Clin Endocrinol Metab 1981, 10: 351–65.

    Article  PubMed  CAS  Google Scholar 

  27. LiVolsi VA. C cell hyperplasia/neoplasia. J Clin Endocrinol Metab 1997, 82: 39–41.

    Article  PubMed  CAS  Google Scholar 

  28. Wu LS, Roman SA, Sosa JA. Medullary thyroid cancer: an update of new guidelines and recent developments. Curr Opin Oncol 2010, 23: 22–7.

    Article  CAS  Google Scholar 

  29. Elisei R. Routine serum calcitonin measurement in the evaluation of thyroid nodules. Best Pract Res Clin Endocrinol Metab 2008, 22: 941–53.

    Article  PubMed  CAS  Google Scholar 

  30. d’Herbomez M, Caron P, Bauters C, et al; French Group GTE (Groupe des Tumeurs Endocrines). Reference range of serum calcitonin levels in humans: influence of calcitonin assays, sex, age, and cigarette smoking. Eur J Endocrinol 2007, 157: 749–55.

    Article  PubMed  CAS  Google Scholar 

  31. Bydureon (exenatide) Product Information. 17/06/2011 Bydureon-EMEA/H/C/002020. Summary of Product Characteristics. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002020/WC500108241.pdf. Accessed January 4, 2012.

  32. Madsen LW, Knauf JA, Gotfredsen C, et al. GLP-1 receptor agonists and the thyroid: C-cell effects in mice are mediated via the GLP-1 receptor and not associated with RET activation. Endocrinology 2012, 153: 1538–47.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Hegedüs L, Moses AC, Zdravkovic M, Le Thi T, Daniels GH. GLP-1 and Ct concentration in humans: lack of evidence of Ct release from sequential screening in over 5000 subjects with type 2 diabetes or nondiabetic obese subjects treated with the human GLP-1 analog, liraglutide. J Clin Endocrinol Metab 2011, 96: 853–60.

    Article  PubMed  CAS  Google Scholar 

  34. Machens A, Schneyer U, Holzhausen HJ, et al. Prospects of remission in medullary thyroid carcinoma according to basal calcitonin level. J Clin Endocrinol Metab 2005, 90: 2029–34.

    Article  PubMed  CAS  Google Scholar 

  35. Guyétant S, Rousselet MC, Durigon M, et al. Sex-related C cell hyperplasia in the normal human thyroid: a quantitative autopsy study. J Clin Endocrinol Metab 1997, 82: 42–7.

    Article  PubMed  Google Scholar 

  36. Sosa JA, Udelsman R. Papillary thyroid cancer. Surg Oncol Clin N Am 2006, 15: 585–601.

    Article  PubMed  Google Scholar 

  37. Yeomans ND. Omeprazole: short- and long-term safety. Adverse Drug React Toxicol Rev 1994, 13: 145–56.

    PubMed  CAS  Google Scholar 

  38. Thurston V, Williams ED. Experimental induction of C cell tumours in thyroid by increased dietary content of vitamin D3. Acta Endocrinol (Copenh) 1982, 100: 41–5.

    CAS  Google Scholar 

  39. Parks M, Rosebraugh C. Weighing risks and benefits of liraglutide—the FDA’s review of a new antidiabetic therapy. N Engl J Med 2010, 362: 774–7.

    Article  PubMed  CAS  Google Scholar 

  40. Important drug warning concerning Victoza®. Subject: potential risks of thyroid C-cell tumours and acute pancreatitis associated with Victoza®. http://www.fda.gov/downloads/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/UCM258828.pdf. Accessed January 4, 2012.

  41. Gier B, Butler PC, Lai CK, Kirakossian D, Denicola MM, Yeh MW. Glucagon like Peptide-1 receptor expression in the human thyroid gland. J Clin Endocrinol Metab 2012, 97: 121–31.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Waser B, Beetschen K, Pellegata NS, Reubi JC. Incretin receptors in non-neoplastic and neoplastic thyroid C cells in rodents and humans: relevance for incretin-based diabetes therapy. Neuro-endocrinology 2011, 94: 291–301.

    CAS  Google Scholar 

  43. Diamant M, Van Gaal L, Stranks S, et al. Once weekly exenatide compared with insulin glargine titrated to target in patients with type 2 diabetes (DURATION-3): an open-label randomised trial. Lancet 2010, 375: 2234–43.

    Article  PubMed  CAS  Google Scholar 

  44. Gallo M, Esposito K, Giugliano D. Diabetes medications and cancer: A way out of uncertainty. Diab Res Clin Pract 2012, 97: 175–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gallo MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallo, M. Thyroid safety in patients treated with liraglutide. J Endocrinol Invest 36, 140–145 (2013). https://doi.org/10.1007/BF03346749

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03346749

Key-words

Navigation