Skip to main content
Log in

The relationship between high density lipoprotein subclass profile and apolipoprotein concentrations

  • Review Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

The HDL fraction in human plasma is heterogeneous in terms of size, shape, composition, and surface charge. The HDL subclasses contents were quantified by 2-dimensional non-denaturing gel electrophoresis, immunoblotting, and image analysis. This research review systematically analyzed the relationship between the contents of HDL subclasses and the concentrations and ratios of the 5 major plasma apolipoproteins (apo). As the concentration of apoA-I increases, the contents of all HDL subclasses increase significantly. The most significant association was observed between large-sized HDL2b contents and apoA-I. ApoA-II played a dual function in the contents of HDL subclasses, and both small-sized HDL3b and HDL3a and large-sized HDL2b tended to increase with apoA-II concentration. An increase in the concentrations of apoC-II, C-III, and B-100 resulted in higher levels of small-sized HDL particles and lower levels of large-sized HDL particles. Plasma apoB-100, apoC-II, and apoC-III appear to play a coordinated role in assembly of HDL particles and the determination of their contents. Higher concentrations of apoA-I could inhibit the reduction in content of large-sized HDL2b effected by apoB-100, C-II, and C-III. The preβ1-HDL contents increased significantly and those of HDL2b declined progressively with an increased apoB-100/apoA-I or a decreased apoC-III/apoC-II ratio. In summary, each apo has distinct but interrelated roles in HDL particle generation and metabolism. ApoA-I and apoC-II concentrations are independent determinants of HDL subtypes in circulation and apoA-I levels might be a more powerful factor to influence HDL subclasses distribution. Moreover, apoB-100/apoA-I ratio could reliably and sensitively reflect the HDL subclass profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asztalos BF, Schaefer EJ. HDL in atheroslerosis:actor or bystander? Atherosclerosis (Suppl) 2003, 4: 21–9.

    CAS  Google Scholar 

  2. Patsch W, Schonfeld G, Gotto M, Patsch JR. Characterization of human high density by zonal ultracentrifugation. J Biol Chem 1980, 255: 3178–85.

    PubMed  CAS  Google Scholar 

  3. Chung BH, Wilkinson T, Geer JC, Segrest JP. Preparative and quantitative isolation of plasma lipoproteins: rapid single discontinuous density gradient ultracentrifugation in vertical rotor. J Lipid Res 1980, 21: 284–91.

    PubMed  CAS  Google Scholar 

  4. Albers JJ, Warnick GR, Wiebe D, et al. Multi-laboratory comparison of three heparin-Mn2+ precipitation procedures for estimating cholesterol in high density lipoprotein. Clin Chem 1978, 24: 853–6.

    PubMed  CAS  Google Scholar 

  5. Soedamah-Muthu SS, Colhoun HM, Thomason MJ, et al; CARDS Investigators. The effect of atorvastatin on serum lipids, lipoproteins and NMR spectroscopy defined lipoprotein subclasses in type 2 diabetic patients with ischaemic heart disease. Atherosclerosis 2003, 167: 243–55.

    PubMed  CAS  Google Scholar 

  6. Williams PT, Krauss RM, Nichols AV, Vranizan KM, Wood PD. Identifying the predominant peak diameter of high-density and low-density lipoproteins by electrophoresis. J Lipid Res 1990, 31: 1131–9.

    PubMed  CAS  Google Scholar 

  7. Huang Y, von Eckardstein A, Wu S, Maeda N, Assmann G. A plasma lipoprotein containing only apolipoprotein E and with gammamobility on electrophoresis releases cholesterol from cells. Proc Natl Acad Sci USA 1994, 9: 1834–8.

    Google Scholar 

  8. Wu XW, Fu MD, Liu BW. Study on the immunodetection method of HDL subclasses in human serum. Chin J Arterioscler 1999, 7: 253–5.

    CAS  Google Scholar 

  9. Lewis GF, Rader DJ. New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res 2005, 96: 1221–32.

    PubMed  CAS  Google Scholar 

  10. Negre-Salvayre A, Dousset N, Ferretti G, Bacchetti T, Curatola G, Salvayre R. Antioxidant and cytoprotective properties of high-density lipoproteins in vascular cells. Free Radic Biol Med 2006, 41: 1031–40.

    PubMed  CAS  Google Scholar 

  11. Tso C, Martinic G, Fan WH, Rogers C, Rye KA, Barter PJ. High-density lipoproteins enhance progenitor-mediated endothelium repair in mice. Arterioscler Thromb Vasc Biol 2006, 26: 1144–9.

    PubMed  CAS  Google Scholar 

  12. Mineo C, Deguchi H, Griffin JH, Shaul PW. Endothelial and antithrombotic actions of HDL. Circ Res 2006, 98: 1352–64.

    PubMed  CAS  Google Scholar 

  13. Cockerill GW, Rye KA, Gamble JR, Vadas MA, Barter PJ. High-density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules. Arterioscler Thromb Vasc Biol 1995, 15: 1987–94.

    PubMed  CAS  Google Scholar 

  14. Murphy AJ, Woollard KJ, Hoang A, et al. High-density lipoprotein reduces the human monocyte inflammatory response. Arterioscler Thromb Vasc Biol 2008, 28: 207–17.

    Google Scholar 

  15. Tangirala RK, Tsukamoto K, Chun SH, Usher D, Puré E, Rader DJ. Regression of atherosclerosis induced by liver-directed gene transfer of apolipoprotein A-I in mice. Circulation 1999, 100: 1816–22.

    PubMed  CAS  Google Scholar 

  16. Badimon JJ, Badimon L, Fuster V. Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterolfed rabbit. J Clin Invest 1990, 85: 1234–41.

    PubMed Central  PubMed  CAS  Google Scholar 

  17. Cheung MC, Brown BG, Wolf AC, Albers JJ. Altered particle size distribution of apoA-I-containing HDL subpopulations in patients with coronary heart disease. J Lipid Res 1991, 32: 383–94.

    PubMed  CAS  Google Scholar 

  18. Dobiásová M, Frohlich J. Understanding the mechanism of LCAT reaction may help to explain the high predictive value of LDL/HDL cholesterol ratio. Physiol Res 1998, 47: 387–97.

    PubMed  Google Scholar 

  19. Davidsson P, Hulthe J, Fagerberg B, Camejo G. Proteomics of apolipoproteins and associated proteins from plasma high-density lipoproteins. Arterioscler Thromb Vasc Biol 2010, 30: 156–63.

    PubMed  CAS  Google Scholar 

  20. Yang Y, Yan B, Fu M, Xu Y, Tian Y. Relationship between plasma lipid concentrations and HDL subclasses. Clin Chim Acta 2005, 354: 49–58.

    PubMed  CAS  Google Scholar 

  21. Gou L, Fu M, Xu Y, Tian Y, Yan B, Yang L. Alterations of high-density lipoprotein subclasses in endogenous hypertriglyceridemia. Am Heart J 2005, 150: 1039–45.

    PubMed  CAS  Google Scholar 

  22. Jia L, Long S, Fu M, et al. Relationship between total cholesterol/high-density lipoprotein cholesterol ratio, triglyceride/high-density lipoprotein cholesterol ratio, and high density lipoprotein subclasses. Metabolism 2006, 55: 1141–8.

    PubMed  CAS  Google Scholar 

  23. Jia L, Fu M, Tian Y, et al. Alterations of high-density lipoprotein subclasses in hypercholesterolemia and combined hyperlipidemia. Int J Cardio 2007, 120: 331–7.

    Google Scholar 

  24. Tian L, Fu M. The relationship between high density lipoprotein subclass profile and plasma lipids concentrations. Lipids Health Dis 2010, 9: 118.

    PubMed Central  PubMed  Google Scholar 

  25. Tian L, Fu MD, Jia LQ, et al. Relationship between apolipoprotein concentrations and HDL subclasses distribution. Lipids 2007, 42: 419–26.

    PubMed  CAS  Google Scholar 

  26. Tian L, Wu X, Fu M, Qin Y, Xu Y, Jia L. Relationship between plasma apolipoproteinB concentrations, apolipoproteinB/ apolipoproteinA-I and HDL subclasses distribution. Clin Chim Acta 2008, 388: 148–55.

    PubMed  CAS  Google Scholar 

  27. Tian L, Wu XW, Fu MD, Xu YH, Jia LQ. The influence of plasma apoA-II concentrations on HDL subclasses distribution. Eur J Lipid Sci Technol 2008, 110: 879–86.

    CAS  Google Scholar 

  28. Tian L, Wu J, Fu M, Xu Y, Jia L. Relationship between apolipoprotein C-III concentrations and high-density lipoprotein subclass distribution. Metabolism 2009, 58: 668–74.

    PubMed  CAS  Google Scholar 

  29. Tian L, Xu Y, Fu M, Jia L, Yang Y. The influence of plasma apoCII concentrations on HDL subclasses distribution. J Atheroscler Thromb 2009, 16: 611–20.

    PubMed  CAS  Google Scholar 

  30. Jia LQ, Wu XW, Fu MD, et al. Relationship between apolipoproteins and alteration of HDL subclasses in hyperlipidemic subjects. Clin Chim Acta 2007, 383: 65–72.

    PubMed  CAS  Google Scholar 

  31. Karathanasis SK. Apolipoprotein multigene family: tandem organization of human apolipoprotein AI, CIII, and AIV genes. Proc Natl Acad Sci USA 1985, 82: 6374–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  32. Brouillette CG, Anantharamaiah GM, Engler JA, Borhani DW. Structural models of human apolipoprotein A-I: A critical analysis and review. Biochim Biophys Acta 2001, 1531: 4–46.

    PubMed  CAS  Google Scholar 

  33. Fielding CJ, Fielding PE. Molecular physiology of reverse cholesterol transport. J Lipid Res 1995, 36: 211–28.

    PubMed  CAS  Google Scholar 

  34. Williams DL, Temel RE, Connelly MA. Roles of scavenger receptor BI and ApoA-I in selective uptake of HDL cholesterol by adrenal cells. Endocr Res 2000, 26: 639–51.

    PubMed  CAS  Google Scholar 

  35. Wang N, Silver DL, Costet P, Tall AR. Specific binding of apoA-I, enhanced cholesterol efflux, and altered plasma membrane morphology in cells expressing ABCA1. J Biol Chem 2000, 275: 33053–8.

    PubMed  CAS  Google Scholar 

  36. Minnich A, Collet X, Roghani A, et al. Site-directed Mutagenesis and Structure-Function Analysis of the Human Apolipoprotein A-I. J Biol Chem 1992, 267: 16553–60.

    PubMed  CAS  Google Scholar 

  37. Sorci-Thomas M, Kearns MW, Lee JP. Apolipoprotein A-I domains involved in lecithin-cholesterol acyltransferase activation. Structure:function relationships. J Biol Chem 1993, 268: 21403–9.

    PubMed  CAS  Google Scholar 

  38. Holvoet P, Zhao Z, Vanloo B, et al. Phospholipid binding and lecithin-cholesterol acyltransferase activation properties of apolipoprotein A-I mutants. Biochemistry 1995, 34: 13334–42.

    PubMed  CAS  Google Scholar 

  39. Sviridov D, Pyle LE, Fidge N. Efflux of cellular cholesterol and phospholipid to apolipoprotein A-I mutants. J Biol Chem 1996, 271: 33277–83.

    PubMed  CAS  Google Scholar 

  40. Ji Y, Jonas A. Properties of an N-terminal proteolytic fragment of apolipoprotein AI in solution and in reconstituted high density lipoproteins. J Biol Chem 1995, 270: 11290–7.

    PubMed  CAS  Google Scholar 

  41. Jonas A, Kézdy KE, Wald JH. Defined apolipoprotein A-I conformations in reconstituted high density lipoprotein discs. J Biol Chem 1989, 264: 4818–24.

    PubMed  CAS  Google Scholar 

  42. Brouillette CG, Jones JL, Ng TC, Kercret H, Chung BH, Segrest JP. Structural studies of apolipoprotein A-I/phosphatidylcholine recombinants by highfield proton NMR, nondenaturing gradient gel electrophoresis, and electron microscopy. Biochemistry 1984, 23: 359–67.

    PubMed  CAS  Google Scholar 

  43. Bergeron J, Frank PG, Scales D, Meng QH, Castro G, Marcel YL. Apolipoprotein A-I conformation in reconstituted discoidal lipoproteins varying in phospholipid and cholesterol content. J Biol Chem 1995, 270: 27429–38.

    PubMed  CAS  Google Scholar 

  44. Frank PG, Marcel YL. Apolipoprotein A-I structure;—function relationships. J Lipid Res 2000, 41: 853–72.

    PubMed  CAS  Google Scholar 

  45. Barrans A, Jaspard B, Barbaras R, Chap H, Perret B, Collet X. Prebeta HDL: structure and metabolism. Biochim Biophys Acta 1996, 1300: 73–85.

    PubMed  Google Scholar 

  46. Segrest JP, Harvey SC, Zannis V. Detailed molecular model of apolipoproteinA-I on the surface of high-density lipoproteins and its functional impliations. Trends Cardiovasc Med 2000, 10: 246–52.

    PubMed  CAS  Google Scholar 

  47. Segrest JP, Jones MK, Klon AE, et al. A detailed moleule belt model for apolipoproteinA-I in disoidal high density lipoprotein. J Biol Chem 1999, 274: 31755–8.

    PubMed  CAS  Google Scholar 

  48. Tall AR, Small DM, Deckelbaum RJ, Shipley GG. Structure and thermodynamic properties of high density lipoprotein recombinants. J Biol Chem 1977, 252: 4701–11.

    PubMed  CAS  Google Scholar 

  49. Borhani DW, Rogers DP, Engler JA, Brouillette CG. Crystal structure of truncated human apolipoprotein A-I suggests a lipid-bound conformation. Proc Natl Acad Sci U S A 1997, 94: 12291–6.

    PubMed Central  PubMed  CAS  Google Scholar 

  50. Williamson R, Lee D, Hagaman J, Maeda N. Marked reduction of high density lipoprotein cholesterol in mice genetically modified to lack apolipoprotein A-I. Proc Natl Acad Sci U S A 1992, 89: 7134–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  51. Rubin EM, Ishida BY, Clift SM, Krauss RM. Expression of human apolipoprotein A-I in transgenic mice results in reduced plasma Concentrations of murine apolipoprotein A-I and the appearance of two new high density lipoprotein size subclasses. Proc Natl Acad Sci U S A 1991, 88: 434–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  52. Walsh A, Ito Y, Breslow JL. High levels of human apolipoproteinA-I in transgenic mice result in increased plasma levels of small high density lipoprotein particles comparable to human HDL3. J Bio Chem 1989, 264: 6488–94.

    CAS  Google Scholar 

  53. Troutt JS, Alborn WE, Mosior MK, et al. An apolipoproteinA-I mimetic dose-dependently increases the formation of preβ1-HDL in human plasma. J Lipid Res 2008, 49: 581–7.

    PubMed  CAS  Google Scholar 

  54. Shachter NS, Hayek T, Leff T, et al. Overexpression of apolipoprotein CII causes hypertriglyceridemia in transgenic mice. J Clin Invest 1994, 93: 1683–90.

    PubMed Central  PubMed  CAS  Google Scholar 

  55. Saidi Y, Sich D, Camproux A, et al. Interrelationships between postprandial lipoproteinB: CIII particle changes and high-density lipoprotein subclass profiles in mixed hyperlipoproteinemia. Metabolism 1999, 48: 60–7.

    PubMed  CAS  Google Scholar 

  56. Lee M, Kim JQ, Kim J, Oh H, Park M. Studies on the plasma lipids profiles, and LCAT and CETP activities according to hyperlipoproteinemia phenotypes (HLP). Atherosclerosis 2001, 159: 381–9.

    PubMed  CAS  Google Scholar 

  57. Hałabis M, Kimak E. HDL particle as a risk factor for cardiovascular diseases in healthy people. Annales UMCS, Sect DDD, 2008, 21: 349–53.

    Google Scholar 

  58. Young SG, Fielding CJ. The ABCs of cholesterol efflux. Nat Gen 1999, 22: 316–8.

    CAS  Google Scholar 

  59. Asztalos BF, Llera-Moya M, Dallal GE, Horvath KV, Schaefer EJ, Rothblat GH. Differential effects of HDL subpopulations on cellulart ABCA-I and SR-BI mediated cholesterol efflux. J Lipid Res 2005, 46: 2246–53.

    PubMed  CAS  Google Scholar 

  60. Ostos MA, Zakin MM. Genetics and molecular biology. Curr Opin Lipidol 2001, 12: 351–4.

    PubMed  CAS  Google Scholar 

  61. Linsel-Nitschke P, Jansen H, Aherrarhou Z, et al. Macrophage cholesterol efflux correlates with lipoprotein subclass distribution and risk of obstructive coronary artery disease in patients undergoing coronary angiography. Lipids Health Dis 2009, 8: 14.

    PubMed Central  PubMed  Google Scholar 

  62. Zhang Y, Zanotti I, Reilly MP, Glick JM, Rothblat GH, Rader DJ. Overexpression of apolipoprotein A-I promotes reverse transport of cholesterol from macrophages to feces in vivo. Circulation 2003, 108: 661–3.

    PubMed  CAS  Google Scholar 

  63. Hahn BH, Grossman J, Ansell BJ, Skaggs BJ, McMahon M. Altered lipoprotein metabolism in chronic inflammatory states: proinflammatory high-density lipoprotein and accelerated atherosclerosis in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Res Ther 2008, 10: 213.

    PubMed Central  PubMed  Google Scholar 

  64. Khovidhunkit W, Memon RA, Feingold KR, Grunfeld C. Infection and inflammation-induced proatherogenic changes of lipoproteins. J Infect Dis 2000, 181: S462–72.

    PubMed  CAS  Google Scholar 

  65. Navab M, Berliner JA, Subbanagounder G, et al. HDL and the inflammatory response induced by LDL-derived oxidized phospholipids. Arterioscler Thromb Vasc Biol 2001, 21: 481–8.

    PubMed  CAS  Google Scholar 

  66. Van Lenten BJ, Wagner AC, Nayak DP, Hama S, Navab M, Fogelman AM. High-density lipoprotein loses its anti-inflammatory properties during acute influenza a infection. Circulation 2001, 103: 2283–8.

    PubMed  CAS  Google Scholar 

  67. Han CY, Chiba T, Campbell JS, et al. Reciprocal and co-ordinate regulation of serum amyloid A versus apolipoprotein A-I and paraoxonase-1 by inflammation in murine hepatocytes. Arterioscler Thromb Vasc Biol 2006, 26: 1806–13.

    PubMed  CAS  Google Scholar 

  68. Artl A, Marsche G, Lestavel S, Sattler W, Malle E. Role of serum amyloid A during metabolism of acute-phase HDL by macrophages. Arterioscler Thromb Vasc Biol 2000, 10: 763–72.

    Google Scholar 

  69. Artl A, Marsche GP, Pussinen P, Knipping G, Sattler W, Malle E. Impaired capacity of acute-phase high density lipoprotein particles to deliver cholesteryl ester to the human HUH-7 hepatoma cell line. Int J Biochem Cell Biol 2002, 34: 370–81.

    PubMed  CAS  Google Scholar 

  70. Navab M, Anantharamaiah GM, Reddy ST, Van Lenten BJ, Ansell BJ, Fogelman AM. Mechanisms of disease: proatherogenic HDL- an evolving field. Nat Clin Pract Endocrinol Metab 2006, 2: 504–11.

    PubMed  CAS  Google Scholar 

  71. Buring JE, O’Connor GT, Goldhaber SZ, et al. Decreased HDL2 and HDL3 cholesterol, Apo A-I and Apo A-II, and increased risk of myocardial infarction. Circulation 1992, 85: 22–9.

    PubMed  CAS  Google Scholar 

  72. Kwiterovich POJ, Coresh J, Smith HH, Baehorik PS, Derby CA, Pearson TA. Comparison of the plasma Concentrations of apolipoproteins B and A-I, and other risk factors in men and women with premature coronary artery disease. Am J Cardiol 1992, 69: 1015–21.

    PubMed  Google Scholar 

  73. Li WH, Tanimura M, Luo CC, Datta S, Chan L. The apolipoprotein multigene family:biosynthesis, structure-function relationship, and evolution. J Lipid Res 1988, 29: 245–71.

    PubMed  CAS  Google Scholar 

  74. Brewer HB, Lux SE, Ronan R, John KM. Amino acid sequence of human apoLp-GlnII (apoA-II), an apolipoprotein isolated from the high density lipoprotien. Proc Natl Acad Sci USA 1972, 69: 1304–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  75. Fruchart JC, Ailhaud G. ApolipoproteinA-containing lipoprotein particles: physiological role, quantification, and clinical significance. Clin Chem 1992, 38: 793–7.

    PubMed  CAS  Google Scholar 

  76. Jonas A, Sweeny SA, Herbert PN. Discoidal complexes of A and C apolipoproteins with lipids and their reactions with lecithin: cholesterol acyltransferase. J Biol Chem 1984, 259: 6369–75.

    PubMed  CAS  Google Scholar 

  77. Lagrost L, Perségol L, Lallemant C, Gambert P. Influence of apolipoprotein composition of high density lipoprotein particles on cholesteryl ester transfer protein activity Particles containing various proportions of apolipoproteins AI and AII. J Biol Chem 1994, 269: 3189–97.

    PubMed  CAS  Google Scholar 

  78. Pussinen PJ, Jauhiainen M, Ehnholm C. ApoA-II/apoA-I molar ratio in the HDL particle influences phospholipid transfer proteinmediated HDL interconversion. J Lipid Res 1997, 38: 12–21.

    PubMed  CAS  Google Scholar 

  79. Broedl UC, Jin W, Fuki IV, Millar JS, Rader DJ. Endothelial lipase is less effective at influencing HDL metabolism in vivo in mice expressing apoA-II. J Lipid Res 2006, 47: 2191–7.

    PubMed  CAS  Google Scholar 

  80. Schultz JR, Gong EL, McCall MR, Nichols AV, Clift SM, Rubin EM. Expression of human apolipoprotein A-II and its effect on high density lipoproteins in transgenic mice. J Biol Chem 1992, 267: 21630–6.

    PubMed  CAS  Google Scholar 

  81. Escola-Gil JC, Marzal-Casacuberta A, Julve-Gil J, et al. Human apolipoprotein A-II is a pro-atherogenic molecule when it is expressed in transgenic mice at a level similar to that in humans: evidence of a potentially relevant species-specific interaction with diet. J Lipid Res 1998, 39: 457–62.

    PubMed  CAS  Google Scholar 

  82. Ribas V, Sánchez-Quesada JL, Antón R, et al. Human apolipoprotein A-II enrichment displaces paraoxonase from HDL and impairs its antioxidant properties: a new mechanism linking HDL protein composition and antiatherogenic potential. Circ Res 2004, 95: 789–97.

    PubMed  CAS  Google Scholar 

  83. Rotllan N, Ribas V, Calpe-Berdiel L, Martin-Campos JM, Blanco-Vaca F, Escola-Gil JC. Overexpression of human apolipoprotein A-II in transgenic mice does not impair macrophage-specific reverse cholesterol transport in vivo. Arterioscler Thromb Vasc Biol 2005, 25: e128–32.

    PubMed  CAS  Google Scholar 

  84. Hedrick CC, Castellani LW, Warden CH, Puppione DL, Lusis AJ. Influence of mouse apolipoprotein A-II on plasma lipoproteins in transgenic mice. J Biol Chem 1993, 268: 20676–82.

    PubMed  CAS  Google Scholar 

  85. Fievet C, Tailleux A, Caillaut JM, Fruchart JC, Denfle P, Duverger N. Protective effect of human apo A-II overexpression on atherogenesis in transgenic mice. Circulation 1996, 94/8 (Suppl): 1632–96.

    Google Scholar 

  86. Dugué-Pujol S, Rousset X, Château D, et al. ApolipoproteinA-II is catabolized in the kidney as a function of its plasma concentration. J Lipid Res 2007, 48: 2151–61.

    PubMed  Google Scholar 

  87. Edelstein C, Halari M, Scanu AM. On the mechanism of the displacement of apolipoprotein A-I by apolipoprotein A-II from the high density lipoprotein surface. Effect of concentration and molecular forms of apolipoprotein A-II. J Biol Chem 1982, 257: 7189–95.

    PubMed  CAS  Google Scholar 

  88. Perret BP, Chollet F, Durand S, Simard G, Chap H, Douste-Blazy L. Distribution of high-density lipoprotein 2 and 3 constituents during in vitro phospholipid hydrolysis. Eur J Biochem 1987, 162: 279–86.

    PubMed  CAS  Google Scholar 

  89. Rye KA, Wee K, Curtiss LK, Bonnet DJ, Barter PJ. Apolipoprotein A-II inhibits high density lipoprotein remodeling and lipid-poor apolipoprotein A-I formation. J Biol Chem 2003, 278: 22530–6.

    PubMed  CAS  Google Scholar 

  90. Wen W, Brandenburg NA, Zhong SB, et al. ApoA-II maintains HDL levels in part by inhibition of hepatic lipase. Studies in apoA-II and hepatic lipase double knockout mice. J Lipid Res 1999, 40: 1064–70.

    Google Scholar 

  91. Hedrick CC, Castellani LW, Wong H, Lusis AJ. In vivo interactions of apoA-II, apoA-I, and hepatic lipase contributing to HDL structure and antiatherogenic functions. J Lipid Res 2001, 42: 563–70.

    PubMed  CAS  Google Scholar 

  92. Brousseau ME, Diffenderfer MR, Millar JS, et al. Effects of cholesteryl ester transfer protein inhibition on high-density lipoprotein subspecies: apolipoprotein A-I metabolism, and fecal sterol excretion. Arterioscler Thromb Vasc Biol 2005, 25: 1057–64.

    PubMed Central  PubMed  CAS  Google Scholar 

  93. Duverger N, Rader D, Ikewaki K, et al. Characterization of high-density apolipoprotein particlesA-I and A-I:A-II isolated from humans with cholesteryl ester transfer protein deficiency. Eur J Biochem 1995, 227: 123–9.

    PubMed  CAS  Google Scholar 

  94. Smit M, van der Kooij-Meijs E, Frants RR, Havekes L, Klasen EC. Apolipoprotein gene cluster on chromosome 19:definite localization of the ApoC2 gene and the polymorphic HpaI site associated with typeIII hyperliproteinemia. Hum Genet 1988, 78: 90–3.

    PubMed  CAS  Google Scholar 

  95. Wei CF, Tsao YK, Robberson DL, Gotto AM Jr, Brown K, Chan L. The structure of the human apolipoproteinC-II gene. J Biol Chem 1985, 260: 15211–21.

    PubMed  CAS  Google Scholar 

  96. Sharpe CR, Sidoli A, Shelley CS, Lucero MA, Shoulders CC, Baralle FE. Human apolipoproteins AI, AII, CII and CIII, cDNA sequences and mRNA abundance. Nucleic Acids Res 1974, 12: 3917–32.

    Google Scholar 

  97. Catapano AL, Kinnunen PK, Breckenridge WC, et al. Lipolysis of apoC-II deficient very low density lipoproteins: enhancement of lipoprotein lipase action by synthetic fragments of apoC-II. Biochem Biophys Res Commun 1979, 89: 951–7.

    PubMed  CAS  Google Scholar 

  98. Landis BA, Rotolo FS, Meyers WC, Clark AB, Quarfordt SH. Influence of apolipoprotien E on soluble and heparin immobilized hepatic lipase. Am J Physiol 1987, 252: G805–10.

    PubMed  CAS  Google Scholar 

  99. Nishida HI, Nakanishi T, Yen EA, Arai H, Yen FT, Nishida T. Nature of the enhancement of lecithin-cholesterol acyltransferase reaction by various apolipoproteins. J Biol Chem 1986, 261: 12028–35.

    PubMed  CAS  Google Scholar 

  100. Havel RJ, Fielding CJ, Olivecrona T, Shore VG, Fielding PE, Egelrud T. Cofactor activity of protein components of human very low density lipoproteins in the hydrolysis of triglycerides by lipoprotein lipase from different sources. Biochemistry 1973, 12: 1828–33.

    PubMed  CAS  Google Scholar 

  101. Fornengo P, Bruno A, Gambino R, Cassader M, Pagano G. Resistant hypertriglyceridemia in a patient with high plasma levels of apolipoprotein CII. Arterioscler Thromb Vasc Biol 2000, 20: 2329–39.

    PubMed  CAS  Google Scholar 

  102. Ito Y, Breslow JL, Chait BT. ApolipoproteinC-III0 lacks carbohydrate residues:use of mass spectrometry to study apolipoprotein structure. J Lipid Res 1989, 30: 1781–7.

    PubMed  CAS  Google Scholar 

  103. Gibson JC, Rubinstein A, Brown WV, et al. Apo E-containing lipoproteins in low or high density lipoprotein deficiency. Arteriosclerosis 1985, 5: 371–80.

    PubMed  CAS  Google Scholar 

  104. Mahley RW, Innerarity TL, Rall SC Jr, Weisgraber KH. Plasma lipoproteins: apolipoprotein structure and function. J Lipid Res 1984, 25: 1277–94.

    PubMed  CAS  Google Scholar 

  105. Bukberg PR, Le NA, Ginsberg HN, Gibson JC, Rubinstein A, Brown WV. Evidence for non-equilibrating pools of apolipoproteinC-III in plasma lipoproteins. J Lipid Res 1985, 26: 1047–57.

    PubMed  CAS  Google Scholar 

  106. Tornoci L, Scheraldi CA, Li X, Ide H, Goldberg IJ, Le NA. Abnormal activation of lipoprotein lipase by non-equilibrating pools of apolipoproteins C-II and C-III in plasma lipoproteins. J Lipid Res 1993, 34: 1793–803.

    PubMed  CAS  Google Scholar 

  107. Shelburne F, Hanks J, Meyers W, Quarfordt S. Effect of apoproteins on hepatic uptake of triglyceride emulsions in the rat. J Clin Invest 1980, 65: 652–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  108. Wang C, McConathy WJ, Kloer HJ, Alaupovic P. Modulation of lipoprotein lipase activity by apolipoproteins: effect of apolipoproteinC-III. J Clin Invest 1985, 75: 384–90.

    PubMed Central  PubMed  CAS  Google Scholar 

  109. Kinnunen PKJ, Ehnholm C. Effect of serum and C apoproteinsfrom very low density lipoproteins on human postheparin plasma hepatic lipase. FEBS Lett 1976, 65: 354–7.

    PubMed  CAS  Google Scholar 

  110. Sparks DL, Pritchard PH. Transfer of cholesteryl ester into high density lipoprotein by cholesteryl ester transfer protein: effect of HDL lipid and apolipoprotein content. J Lipid Res 1989, 30: 1491–8.

    PubMed  CAS  Google Scholar 

  111. Dallinga-Thie GM, Berk-Planken II, Bootsma AH, Jansen H; Diabetes Atorvastatin Lipid intervention (DALI) Study Group. Atorvastatin decreases apolipoproteinC-III in apolipoproteinB-containing lipoprotein and HDL in Type 2 diabetes. A potential mechanism to lower plasma triglycerides. Diabetes Care 2004, 27: 1358–64.

    PubMed  CAS  Google Scholar 

  112. Onat A, Hergenc G, Sansoy V, et al. Apolipoprotein C-III, a strong discriminant of coronary risk in men and a determinant of the metabolic syndrome in both genders. Atherosclerosis 2003, 168: 81–9.

    PubMed  CAS  Google Scholar 

  113. Kawakami A, Aikawa M, Libby P, Alcaide P, Luscinskas FW, Sacks FM. Apolipoprotein CIII in apolipoprotein B lipoproteins enhances the adhesion of human monocytic cells to endothelial cells. Circulation 2006, 113: 691–700.

    PubMed  CAS  Google Scholar 

  114. Marcovina S, Packard CJ. Measurement and meaning of apolipoprotein AI and apolipoprotein B plasma Concentrations. J Intern Med 2006, 259: 437–46.

    PubMed  CAS  Google Scholar 

  115. Sniderman AD, Furberg CD, Keech A, et al. Apolipoproteins versus lipids as indices of coronary risk and as targets for statin therapy treatment. Lancet 2003, 361: 777–80.

    PubMed  CAS  Google Scholar 

  116. Barter PJ, Ballantyne CM, Carmena R, et al. Apo B versus cholesterol to estimate cardiovascular risk and to guide therapy: report of the thirty person/ten country panel. J Intern Med 2006, 259: 247–58.

    PubMed  CAS  Google Scholar 

  117. Rizzo M, Taylor JM, Barbagallo CM, Berneis K, Blanche PJ, Krauss RM. Effects on lipoprotein subclasses of combined expression human hepatic lipase and human B in transgenic rabbits. Arterioscler Thromb Vasc Biol 2004, 24: 141–6.

    PubMed  CAS  Google Scholar 

  118. Walldius G, Jungner I, Holme I, Aastveit AH, Kolar W, Steiner E. High apolipoproteinB, low apolipoproteinA-I, and improvement in the prediction of fatal myocardial infarction (AMORIS Study): a prospective study. Lancet 2001, 358: 2026–33.

    PubMed  CAS  Google Scholar 

  119. Yusuf P, Hawken S, Ounpuu S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004, 364: 937–52.

    PubMed  Google Scholar 

  120. Walldius G, Jungner I, Aastveit AH, Holme I, Furberg CD, Sniderman AD. The apoB/apoA-I ratio is better than the cholesterol ratios to estimate the balance between plasma proatherogenic and antiatherogenic lipoproteins and to predict coronary risk. Clin Chem Lab Med 2004, 42: 1355–63.

    PubMed  CAS  Google Scholar 

  121. Marcovina SM, Albers JJ, Henderson LO, Hannon WH. International Federation of Clinical Chemistry standardization project for measurements of apolipoproteinA-I and B:III. Comparability of apolipoproteinA-I value by use of international reference material. Clinical Chem 1993, 39: 773–81.

    CAS  Google Scholar 

  122. Asztalos BF, Collins D, Cupples LA, et al. Value of high-density lipoprotein (HDL) subpopulations in predicting recurrent cardiovascular events in the Veterans Affairs HDL Intervention Trial. Arterioscler Thromb Vasc Biol 2005, 25: 2185–91.

    PubMed  CAS  Google Scholar 

  123. Sedlis SP, Schechtman KB, Ludbrook PA, Sobel BE, Schonfeld G. Plasma apoproteins and the severity of coronary artery disease. Circulation 1986, 73: 978–86.

    PubMed  CAS  Google Scholar 

  124. Yamada T, Ozawa T, Gejyo F, et al. Decreased serum apolipoproteinAII/AI ratio in systemic amyloidosis. Ann Rheum Dis 1998, 57: 249–51.

    PubMed Central  PubMed  CAS  Google Scholar 

  125. Kontush A, Therond P, Zerrad A, et al. Preferential sphingosine-1-phosphate enrichment and sphingomyelin depletion are key features of small dense HDL3 particles. Relevance to antiapoptotic and antioxidative activities. Arterioscler Thromb Vasc Bio 2007, 27: 1843–9.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fu MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, L., Fu, M. The relationship between high density lipoprotein subclass profile and apolipoprotein concentrations. J Endocrinol Invest 34, 461–472 (2011). https://doi.org/10.1007/BF03346714

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03346714

Key-words

Navigation