Skip to main content
Log in

The human POMC gene promoter: Where do we stand?

  • Short Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Proopiomelanocortin (POMC) is crucial for several life-essential functions and its regulation has been studied extensively in the past decades. The first studies provided the framework for POMC promoter activity, namely the identification for the major response elements contained in the promoter, e.g., the glucocorticoid response element, the Nur response element, while subsequent studies showed the importance of cooperation and interplay between transcription factors to achieve optimal promoter activity. The involvement of constitutive repressors of POMC transcription, such as Bmp4, provided the latest clues to our understanding of POMC promoter activity. This increased knowledge benefits the clinician as it allows genetic testing and early recognition of patients with congenital ACTH deficiency due to mutations in TPIT and paves the way to new medical treatments in Cushing’s disease. The present review will illustrate the current standing on regulation of the human POMC promoter, focusing on its activity in corticotropes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Takahashi H, Teranishi Y, Nakanishi S, Numa S. Isolation and structural organization of the human corticotropin-β-lipotropin precursor gene. FEBS Lett 1981, 135: 97–102.

    Article  CAS  PubMed  Google Scholar 

  2. Clark AJL, Lavender PM, Coates P, Johnson MR, Rees LH. In vitro and in vivo analysis of the processing and fate of the peptide products of the short proopiomelanocortin mRNA. Mol Endocrinol 1990, 4: 1737–43.

    Article  CAS  PubMed  Google Scholar 

  3. Lacaze-Masmonteil T, De Keyzer Y, Luton JP, Kahn A, Bertagna X. Characterization of proopiomelanocortin transcripts in human non-pituitary tissues. Proc Natl Acad Sci U S A 1987, 84: 7261–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Notake M, Kurosaki T, Yamamoto T, Handa H, Mishina M, Numa S. Sequence requirement for transcription in vitro of the human corticotropin/β-lipotropin precursor gene. Eur J Biochem 1983, 133: 599–605.

    Article  CAS  PubMed  Google Scholar 

  5. Riegel AT, Remenick J, Wolford RG, Berard DS, Hager GL. A novel transcriptional activator (PO-B) binds between the TATA box and cap site of the pro-opiomelanocortin gene. Nucleic Acids Res 1990, 18: 4513–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Liu B, Mortrud M, Low MJ. DNA elements with AT-rich core sequences direct pituitary cell-specific expression of the pro-opiomelanocortin gene in transgenic mice. Biochem J 1995, 312: 827–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Bumaschny V, de Souza FSJ, López Leal RA, et al. Transcriptional regulation of pituitary POMC is conserved at the vertebrate extremes despite great promoter sequence divergence. Mol Endocrinol 2007, 21: 2738–49.

    Article  CAS  PubMed  Google Scholar 

  8. Therrien M, Drouin J. Pituitary pro-opiomelanocortin expression requires synergistic interactions of several regulatory elements. Mol Cell Biol 1991, 11: 3492–503.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Picon A, Bertagna X, De Keyzer Y. Analysis of proopiomelanocortin gene transcription mechanisms in bronchial tumour cells. Mol Cell Endocrinol 1999, 147: 93–102.

    Article  CAS  PubMed  Google Scholar 

  10. Murakami I, Takeuchi S, Kudo T, Sutou S, Takahashi S. Corticotropin-releasing hormone or dexamethasone regulates rat proopiomelanocortin transcription through Tpit/Pitx-responsive element in its promoter. J Endocrinol 2007, 193: 279–90.

    Article  CAS  PubMed  Google Scholar 

  11. Poulin G, Turgeon B, Drouin J. NeuroD1/β2 contributes to cell-specific transcription of the proopiomelanocortin gene. Mol Cell Biol 1997, 17: 6673–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Philips A, Lesage S, Gingras R, et al. Novel dimeric Nur77 signaling mechanism in endocrine and lymphoid cells. Mol Cell Biol 1997, 17: 5946–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Bilodeau S, Vallette-Kasic S, Gauthier Y, et al. Role of Brg1 and HDAC2 in GR trans-repression of the pituitary POMC gene and misexpression in Cushing disease. Genes Dev 2006, 20: 2871–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Nudi M, Ouimette JF, Drouin J. Bone morphogenic protein (Smad)-mediated repression of proopiomelanocortin transcription by interference with Pitx/Tpit activity. Mol Endocrinol 2005, 19: 1329–42.

    Article  CAS  PubMed  Google Scholar 

  15. Therrien M, Drouin J. Cell-specific helix-loop-helix factor required for pituitary expression of the pro-opiomelanocortin gene. Mol Cell Biol 1993, 13: 2342–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Lamonerie T, Tremblay J, Lanctôt C, Therrien M, Gauthier Y, Drouin J. PTX1, a bicoid-related homeobox transcription factor involved in transcription of pro-opiomelanocortin (POMC) gene. Genes Dev 1996, 10: 1284–95.

    Article  CAS  PubMed  Google Scholar 

  17. Maira M, Couture C, Le Martelot G, Pulichino AM, Bilodeau S, Drouin J. The T-box factor Tpit recruits SRC/p160 co-activators and mediates hormone action. J Biol Chem 2003, 278: 46523–32.

    Article  CAS  PubMed  Google Scholar 

  18. Abbud RA, Kelleher R, Melmed S. Cell-specific pituitary gene expression profiles after treatment with leukemia inhibitory factor reveal novel modulators for proopiomelanocortin expression. Endocrinology 2004, 145: 867–80.

    Article  CAS  PubMed  Google Scholar 

  19. Drouin J, Maira M, Philips A. Novel mechanism of action for Nur77 and antagonism by glucocorticoids: a convergent mechanism for CRH activation and glucocorticoid repression of POMC gene transcription. J Steroid Biochem Mol Biol 1998, 65: 59–63.

    Article  CAS  PubMed  Google Scholar 

  20. Bucciarelli LG, Pecori Giraldi F, Cavagnini F. No mutations in TPIT, a corticotroph-specific gene, in human tumoral pituitary ACTH-secreting cells. J Endocrinol Invest 2005, 28: 1015–8.

    Article  CAS  PubMed  Google Scholar 

  21. Giacomini D, Páez Pereda M, Theodoropoulou M, et al. Bone morphogenetic protein-4 inhibits corticotroph tumor cells: involvement in the retinoic acid inhibitory action. Endocrinology 2006, 147: 247–56.

    Article  CAS  PubMed  Google Scholar 

  22. Ikeda M, Kakuyama M, Shoda T, Iwasaki Y, Fukuda K. Potentiation of cyclic AMP-mediated proopiomelanocortin gene promoter activity by calcium channel blockers in a pituitary cell line. Eur J Pharmacol 2007, 558: 1–6.

    Article  CAS  PubMed  Google Scholar 

  23. Kovalovsky D, Refojo D, Liberman AC, et al. Activation and induction of NUR77/NURR1 in corticotrophs by CRH/cAMP: involvement of calcium, protein kinase A, and MAPK pathways. Mol Endocrinol 2002, 16: 1638–51.

    Article  CAS  PubMed  Google Scholar 

  24. Boutillier AL, Gaiddon C, Lorang D, Roberts JL, Loeffler JP. Transcriptional activation of the proopiomelanocortin gene by cyclic AMP-responsive element binding protein. Pituitary 1998, 1: 33–43.

    Article  CAS  PubMed  Google Scholar 

  25. Autelitano DJ. Glucocorticoid regulation of c-fos, c-jun and transcription factor AP-1 in the AtT-20 corticotrope cell. J Neuroendocrinol 1994, 6: 627–37.

    Article  CAS  PubMed  Google Scholar 

  26. Boutillier AL, Monnier D, Lorang D, Lundblad JR, Roberts JL, Loeffler JP. Corticotropin-releasing hormone stimulates proopiomelanocortin transcription by cFos-dependent and -independent pathways: characterization of an AP1 site in exon 1. Mol Endocrinol 1995, 9: 745–55.

    CAS  PubMed  Google Scholar 

  27. Kraus J, Höllt V. Identification of a cAM P-response element on the human proopiomelanocortin gene upstream promoter. DNA Cell Biol 1995, 14: 103–10.

    Article  CAS  PubMed  Google Scholar 

  28. Fukuda K, Uetsuki N, Uga H, et al. Potentiation of proopiomelanocortin gene expression in culture pituitary cells by benzodiazepines. Anesthesiology 2003, 98: 1172–7.

    Article  CAS  PubMed  Google Scholar 

  29. Ikeda M, Kakuyama M, Shoda T, Fukuda K. Enhancement of proopiomelanocortin gene promoter activity by local anesthetics in a pituitary cell line. Reg Anesth Pain Med 2007, 32: 60–6.

    Article  CAS  PubMed  Google Scholar 

  30. Morishita M, Iwasaki Y, Yamamori E, et al. Antidiabetic sulfonylurea enhances secretagogue-induced adrenocorticotropin secretion and proopiomelanocortin gene expression in vitro. Endocrinology 2000, 141: 3313–8.

    Article  CAS  PubMed  Google Scholar 

  31. Zhao LF, Iwasaki Y, Oki Y, et al. Purinergic receptor ligands stimulate pro-opiomelanocortin gene expression in AtT-20 pituitary corticotroph cells. J Neuroendocrinol 2006, 18: 273–8.

    Article  CAS  PubMed  Google Scholar 

  32. Jin WD, Boutillier AL, Glucksman MJ, Salton SRJ, Loeffler JP, Roberts JL. Characterization of a corticotropin-releasing hormone-responsive element in the rat proopiomelanocortin gene promoter and molecular cloning of its binding protein. Mol Endocrinol 1994, 8: 1377–88.

    CAS  PubMed  Google Scholar 

  33. Murphy EP, Conneely OM. Neuroendocrine regulation of the hypothalamic-pituitary-adrenal axis by the nurr1/nur77 subfamily of nuclear receptors. Mol Endocrinol 1997, 11: 39–47.

    Article  CAS  PubMed  Google Scholar 

  34. Maira M, Martens C, Philips A, Drouin J. Heterodimerization between members of the Nur subfamily of orphan nuclear receptors as a novel mechanism for gene activation. Mol Cell Biol 1999, 19: 7549–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Batsché E, Desroches J, Bilodeau S, Gauthier Y, Drouin J. Rb enhances p160/SRC coactivator-dependent activity of nuclear receptors and hormone responsiveness. J Biol Chem 2005, 280: 19746–56.

    Article  CAS  PubMed  Google Scholar 

  36. Vila G, Papazoglou M, Stalla J, et al. Sonic hedgehog regulates CRH signal transduction in the adult pituitary. FASEB J 2005, 19: 281–3.

    CAS  PubMed  Google Scholar 

  37. Karalis KP, Venihaki M, Zhao J, van Vlerken LE, Chandras C. NF-κB participates in the corticotropin-releasing hormone-induced regulation of the pituitary proopiomelanocortin gene. J Biol Chem 2004, 279: 10837–40.

    Article  CAS  PubMed  Google Scholar 

  38. Labeur M, Refojo D, Wölfel B, et al. Interferon-γ inhibits cellular proliferation and ACTH production in corticotroph tumor cells through a novel janus kinases-signal transducer and activator of transcription 1/nuclear factor-kappa B inhibitory signaling pathway. J Endocrinol 2008, 199: 177–89.

    Article  CAS  PubMed  Google Scholar 

  39. Taguchi T, Takao T, Iwasaki Y, Nishiyama M, Asaba K, Hashimoto K. Suppressive effects of dehydroepiandrosterone and the nuclear factor-kB inhibitor parthenolide on corticotroph tumor cell growth and function in vitro and in vivo. J Endocrinol 2006, 188: 321–31.

    Article  CAS  PubMed  Google Scholar 

  40. Takayasu S, Iwasaki Y, Nigawara T, et al. Involvement of nuclear factor-KB and Nurr-1 in cytokine-induced transcription of proopiomelanocortin gene in AtT20 corticotroph cells. Neuroimmunomodulation 2010, 17: 88–96.

    Article  CAS  PubMed  Google Scholar 

  41. Asaba K, Iwasaki Y, Asai M, et al. High glucose activates pituitary proopiomelanocortin gene expression: possible role of free radicalsensitive transcription factors. Diabetes Metab Res Rev 2007, 23: 317–23.

    Article  CAS  PubMed  Google Scholar 

  42. Tsukamoto N, Otsuka F, Miyoshi T, et al. Effects of bone morphogenetic protein (BMP) on adrenocorticotropin production by pituitary corticotrope cells: involvement of up-regulation of BMP receptor signaling by somatostatin analogs. Endocrinology 2010, 151: 1129–41.

    Article  CAS  PubMed  Google Scholar 

  43. Turney MK, Kovacs WJ. Function of a truncated glucocorticoid receptor form at a negative glucocorticoid response element in the proopiomelanocortin gene. J Mol Endocrinol 2001, 26: 43–9.

    Article  CAS  PubMed  Google Scholar 

  44. Drouin J, Sun YL, Chamberland M, et al. Novel glucocorticoid receptor complex with DNA element of the hormone-repressed POMC gene. EMBOJ 1993, 12: 145–58.

    CAS  Google Scholar 

  45. Reichardt HM, Kaestner KH, Tuckermann J, et al. DNA binding of the glucocorticoid receptor is not essential for survival. Cell 1998, 93: 531–41.

    Article  CAS  PubMed  Google Scholar 

  46. Mönig H, Ali IU, Oldfield EH, Schulte HM. Structure of the POMC promoter region in pituitary and extrapituitary ACTH-producing tumors. Exp Clin Endocrinol 1993, 101: 36–8.

    Article  PubMed  Google Scholar 

  47. Chang ACY, Israel A, Gazdar A, Cohen SN. Initiation of pro-opiomelanocortin mRNA from a normally quiescent promoter in a human small cell lung carcinoma. Gene 1989, 84: 115–26.

    Article  CAS  PubMed  Google Scholar 

  48. Philips A, Maira M, Mullick A, et al. Antagonism between Nur77 and glucocorticoid receptor for control of transcription. Mol Cell Biol 1997, 17: 5952–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Okabe T, Takayanagi R, Adachi M, Imasaki K, Nawata H. Nur77, a member of the steroid receptor superfamily, antagonizes negative feedback of ACTH synthesis and secretion by glucocorticoid in pituitary corticotrope cells. J Endocrinol 1998, 156: 169–75.

    Article  CAS  PubMed  Google Scholar 

  50. Invitti C, Pecori Giraldi F, De Martin M, Cavagnini F. Diagnosis and management of Cushing’s syndrome: results of an Italian multicentre study. Study Group of the Italian Society of Endocrinology on the Pathophysiology of the Hypothalamic-Pituitary-Adrenal Axis. J Clin Endocrinol Metab 1999, 84: 440–8.

    CAS  PubMed  Google Scholar 

  51. Jiang J, Li N, Wang X, et al. Aberrant expression and modification of silencing mediator of retinoic acid and thyroid hormone receptors involved in the pathogenesis of tumoral cortisol resistance. Endocrinology 2010, 151: 3697–705.

    Article  CAS  PubMed  Google Scholar 

  52. Latchoumanin O, Mynard V, Devin-Leclerc J, Dugué MA, Bertagna X, Catelli MG. Reversal of glucocorticoid-dependent proopiomelanocortin gene inhibition by leukemia inhibitory factor. Endocrinology 2007, 148: 422–32.

    Article  CAS  PubMed  Google Scholar 

  53. Páez Pereda M, Kovalovsky D, Hopfner U, et al. Retinoic acid prevents experimental Cushing’s syndrome. J Clin Invest 2001, 108: 1123–31.

    Article  Google Scholar 

  54. Matsumoto S, Hashimoto K, Yamada M, Satoh T, Hirato J, Mori M. Liver X receptor-α regulates proopiomelanocortin (POMC) gene transcription in the pituitary. Mol Endocrinol 2009, 23: 47–60.

    Article  CAS  PubMed  Google Scholar 

  55. Mynard V, Guignat L, Devin-Leclerc J, Bertagna X, Catelli MG. Different mechanisms for leukemia inhibitory factor-dependent activation of two proopiomelanocortin promoter regions. Endocrinology 2002, 143: 3916–24.

    Article  CAS  PubMed  Google Scholar 

  56. Auernhammer CJ, Kopp FB, Vlotides G, et al. Comparative study of gp130 cytokine effects on corticotroph AtT-20 cells — Redundancy or specificity of neuroimmunoendocrine modulators? Neuroimmunomodulation 2004, 11: 224–32.

    Article  CAS  PubMed  Google Scholar 

  57. Yano H, Readhead C, Nakashima M, Ren SG, Melmed S. Pituitary-directed leukemia inhibitory factor transgene causes Cushing’s syndrome: neuro-immune-endocrine modulation of pituitary development. Mol Endocrinol 1998, 12: 1708–20.

    CAS  PubMed  Google Scholar 

  58. Chesnokova V, Auernhammer CJ, Melmed S. Murine leukemia inhibitory factor gene disruption attenuates the hypothalamo-pituitary-adrenal axis stress response. Endocrinology 1998, 139: 2209–16.

    CAS  PubMed  Google Scholar 

  59. Iwasaki Y, Taguchi T, Nishiyama M, et al. Lipopolysaccharide stimulates proopiomelanocortin gene expression in AtT20 corticotroph cells. Endocr J 2008, 55: 285–90.

    Article  CAS  PubMed  Google Scholar 

  60. Kumagai C, Takao T, Matsumoto R, Asaba K, Hashimoto K. Modulation of interleukin-1 receptors followed by endotoxin lipopolysaccharide treatment in the mouse AtT-20 pituitary tumor cell line. Neuroimmunomodulation 2003, 10: 310–6.

    Article  CAS  Google Scholar 

  61. Mynard V, Latchoumanin O, Guignat L, et al. Synergistic signaling by corticotropin-releasing hormone and leukemia inhibitory factor bridged by phosphorilated 3′,5′-cyclic adenosine monophosphate response element binding protein at the Nur response element (NurRE)-signal transducers and activators of transcription (STAT) element of the proopiomelanocortin promoter. Mol Endocrinol 2004, 18: 2997–3010.

    Article  CAS  PubMed  Google Scholar 

  62. Kovalovsky D, Páez Pereda M, Labeur MS, et al. Nur77 induction and activation are necessary for interleukin-1 stimulation of proopiomelanocortin in AtT-20 corticotrophs. FEBS Lett 2004, 563: 229–33.

    Article  CAS  PubMed  Google Scholar 

  63. Bousquet C, Zatelli MC, Melmed S. Direct regulation of pituitary proopiomelanocortin by STAT3 provides a novel mechanism for immuno-neuroendocrine interfacing. J Clin Invest 2000, 106: 1417–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Bousquet C, Ray DW, Melmed S. A common pro-opiomelanocortin-binding element mediates leukemia inhibitory factor and corticotropin-releasing hormone transcriptional synergy. J Biol Chem 1997, 272: 10551–7.

    Article  CAS  PubMed  Google Scholar 

  65. Akita S, Webster J, Ren SG, et al. Human and murine pituitary expression of leukemia inhibitory factor. Novel intrapituitary regulation of adrenocorticotropin hormone synthesis and secretion. J Clin Invest 1995, 95: 1288–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Bousquet C, Susini C, Melmed S. Inhibitory roles for SHP-1 and SOCS-3 following pituitary proopiomelanocortin induction by leukemia inhibitory factor. J Clin Invest 1999, 104: 1277–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Katahira M, Iwasaki Y, Aoki Y, Oiso Y, Saito H. Cytokine regulation of the rat proopiomelanocortin gene expression in AtT-20 cells. Endocrinology 1998, 139: 2414–22.

    Article  CAS  PubMed  Google Scholar 

  68. Gardiner-Garden M, Frommer M. Transcripts and CpG islands associated with the pro-opiomelanocortin gene and other neurally expressed genes. J Mol Endocrinol 1994, 12: 365–82.

    Article  CAS  PubMed  Google Scholar 

  69. Newell-Price J, King P, Clark AJL. The CpG island promoter of the human proopiomelanocortin gene is methylated in nonexpressing normal tissue and tumors and represses expression. Mol Endocrinol 2001, 15: 338–48.

    Article  CAS  PubMed  Google Scholar 

  70. Picon A, Bertagna X, De Keyzer Y. Analysis of the human proopiomelanocortin gene promoter in a small cell lung carcinoma cell line reveals an unusual role for E2F transcription factors. Oncogene 1999, 18: 2627–33.

    Article  CAS  PubMed  Google Scholar 

  71. Mizoguchi Y, Kajiume T, Miyagawa S, Okada S, Nishi Y, Kobayashi M. Steroid-dependent ACTH-produced thymic carcinoid: regulation of POMC gene expression by cortisol via methylation of its promoter region. Horm Res 2007, 67: 257–62.

    Article  CAS  PubMed  Google Scholar 

  72. Ye L, Li X, Kong X, et al. Hypomethylation in the promoter region of POMC gene correlates with ectopic overexpression in thymic carcinoids. J Endocrinol 2005, 185: 337–43.

    Article  CAS  PubMed  Google Scholar 

  73. De Keyzer Y, Bertagna X, Luton JP, Kahn A. Variable modes of proopiomelanocortin gene transcription in human tumors. Mol Endocrinol 1989, 3: 215–23.

    Article  PubMed  Google Scholar 

  74. Lavender PM, Clark AJL, Besser GM, Rees LH. Variable methylation of the 5′-flanking DNA of the human pro-opiomelanocortin gene. J Mol Endocrinol 1991, 6: 53–61.

    Article  CAS  PubMed  Google Scholar 

  75. Vallette-Kasic S, Brue T, Pulichino AM, et al. Congenital isolated adrenocorticotropin deficiency: an underestimated cause of neonatal death, explained by TPIT gene mutations. J Clin Endocrinol Metab 2005, 90: 1323–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Pecori Giraldi MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giraldi, F.P., Cassarino, F., Pagliardini, L. et al. The human POMC gene promoter: Where do we stand?. J Endocrinol Invest 34, 454–460 (2011). https://doi.org/10.1007/BF03346713

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03346713

Key-words

Navigation