Skip to main content

Advertisement

Log in

Dehydroepiandrosterone sulfate and cognitive function in the elderly: The InCHIANTI Study

  • Original Articles
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

DHEA and its sulfate derivative (DHEAS) decline with age. The decline in DHEAS levels has been associated with many physiological impairments in older persons including cognitive dysfunction. However, data regarding the possible relationship between DHEAS and cognition are scant. We investigated whether DHEAS levels are associated with presence and development of lower cognitive function measured by the Mini Mental State Examination (MMSE) in older men and women. One thousand and thirty-four residents aged ≥65 yr of the InCHIANTI Study with data available on DHEAS and MMSE were randomly selected. MMSE was administered at baseline and 3 yr later. Among these, 841 completed a 3-yr follow-up. Parsimonious models obtained by backward selection from initial fully-adjusted models were used to identify independent factors associated with MMSE and DHEAS. The final analysis was performed in 755 participants (410 men and 345 women) with MMSE score ≥21. A significant age-related decline of both DHEAS levels (p<0.001) and MMSE score (p<0.001) was found over the 3-yr follow-up. At enrolment, DHEAS was significantly and positively associated with MMSE score, independently of age and other potential confounders (β±SE 0.003±0.001, p<0.005). Low baseline DHEAS levels were predictive of larger decline of MMSE and this relationship was significant after adjusting for covariates (β±SE −0.004±0.002, p<0.03). Our data show a significant and positive association between DHEAS and cognitive function, assessed by MMSE test. Low DHEAS levels predict accelerated decline in MMSE score during the 3-yr follow-up period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Labrie F, Bélanger A, Cusan L, Gomez JL, Candas B. G. Marked decline in serum concentration of adrenal C 19 sex steroid precursor and conjugated androgen metabolites during aging. J Clin Endocrinol Metab 1997, 82: 2396–402.

    Article  PubMed  CAS  Google Scholar 

  2. Bjørnerem A, Straume B, Midtby M, et al. Endogenous sex hormones in relation to age, sex, lifestyle factors, and chronic disease in a general population: the Tromsø Study. J Clin Endocrinol Metab 2004, 89: 6039–47.

    Article  PubMed  CAS  Google Scholar 

  3. Valenti G, Denti L, Saccò M, et al; GISEG (Italian Study Group on Geriatric Endocrinology). Consensus document substitution therapy with DHEA in the elderly. Aging Clin Exp Res 2006, 18: 277–300.

    Article  PubMed  Google Scholar 

  4. Markowski M, Ungeheuer M, Bitran D, Locurto C. Memory-enhancing effects of DHEAS in aged mice on a win-shift water escape task. Physiol Behav 2001, 72: 521–5.

    Article  PubMed  CAS  Google Scholar 

  5. Fedotova J, Sapronov N. Behavioral effects of dehydroepiandrosterone in adult male rats. Prog Neuropsychopharmacol Biol Psychiatry 2004, 28: 1023–7.

    Article  PubMed  CAS  Google Scholar 

  6. Farr SA, Banks WA, Uezu K, Gaskin FS, Morley JE. DHEAS improves learning and memory in aged SAMP8 mice but not in diabetic mice. Life Sci 2004, 75: 2775–85.

    Article  PubMed  CAS  Google Scholar 

  7. Sujkovic E, Mileusnic R, Fry JP, Rose SP. Temporal effects of dehydroepiandrosterone sulphate on memory formation in day-old chicks. Neuroscience 2007, 148: 375–84.

    Article  PubMed  CAS  Google Scholar 

  8. Fonda SJ, Bertrand R, O’Donnell A, Longcope C, McKinlay JB. Age, hormones, and cognitive functioning among middle-aged and elderly men: cross-sectional evidence from the Massachusetts Male Aging Study. J Gerontol A Biol Sci Med Sci 2005, 60: 385–90.

    Article  PubMed  Google Scholar 

  9. Davis SR, Shah SM, McKenzie DP, Kulkarni J, Davison SL, Bell RJ. Dehydroepiandrosterone sulfate levels are associated with more favorable cognitive function in women. J Clin Endocrinol Metab 2008, 93: 801–8.

    Article  PubMed  CAS  Google Scholar 

  10. Barrett-Connor E, Edelstein SL. A prospective study of dehydroepiandrosterone sulphate, and cognitive function in an older population: the Rancho Bernardo Study. J Am Geriatr Soc 1994, 42: 420–3.

    PubMed  CAS  Google Scholar 

  11. Yaffe K, Ettinger B, Pressman A, et al. Neuropsychiatric and dehydropeiandrosterone sulphate in elderly women: a prospective study. Biol Psychiatry 1998, 43: 694–700.

    Article  PubMed  CAS  Google Scholar 

  12. Moffat SD, Zonderman AB, Harman SM, et al. The relationship between longitudinal declines in dehydroepiandrosterone sulphate concentrations and cognitive performance in older men. Arch Inter Med 2000, 160: 2193–8.

    Article  CAS  Google Scholar 

  13. Berr C, Lafont S, Debuire B, Dartigues JF, Baulieu EE. Relationship of dehydroepiandrosterone sulphate in the elderly with functional, physiological and mental status, and short-term mortality: a French community-based study. Proc Natl Acad Sci U S A 1996, 93: 13410–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Kalmijn S, Launer LJ, Stolk RP, et al. A prospective study on cortisol, dehydroepiandrosterone sulphate, and cognitive function in the elderly. J Clin Endocrinol Metab 1998, 83: 3487–92.

    Article  PubMed  CAS  Google Scholar 

  15. Wolf OT, Neumann O, Hellhammer DH, et al. Effects of a two-week physiological dehydroepiandrosterone substitution on cognitive performance and well-being in healthy elderly women and men. J Clin Endocrinol Metab 1997, 82: 2363–7.

    PubMed  CAS  Google Scholar 

  16. Wolf OT, Naumann E, Hellhammer DH, Kirschbaum C. Effects of dehydroepiandrosterone replacement in elderly men on event-related potentials, memory and well-being. J Gerontol A Biol Sci Med Sci 1998, 53: M385–90.

    Article  PubMed  CAS  Google Scholar 

  17. Wolf OT, Kudielka BM, Hellhammer DH, Hellhammer J, Kirschbaum C. Opposing effects of DHEA replacement in elderly subjects on declarative memory and attention after exposure to a laboratory stressor. Psychoneuroendocrinology 1998, 23: 617–29.

    Article  PubMed  CAS  Google Scholar 

  18. Barnhart KT, Freeman E, Grisso JA, Rader DJ, Sammel M, Kapoor S, Nestler JE. The effect of dehydroepiandrosterone supplementation to symptomatic perimenopausal women on serum endocrine profiles, lipid parameters, and health-related quality of life. J Clin Endocrinol Metab 1999, 84: 3896–902.

    PubMed  CAS  Google Scholar 

  19. Van Niekerk JK, Huppert FA, Herbert J. Salivary cortisol and DHEA: association with measures of cognition and well-being in normal older men, and effect of three months of DHEA supplementation. Psychoneuroendocrinology 2001, 26: 591–612.

    Article  PubMed  Google Scholar 

  20. Ferrucci L, Bandinelli S, Benvenuti E, et al. Subsystems contributing to the decline in ability to walk: bridging the gap between epidemiology and geriatric practice in the InCHIANTI study. J Am Geriatr Soc 2000, 48: 1618–25.

    PubMed  CAS  Google Scholar 

  21. Ainsworth BE, Haskell WL, Leon AS, et al. Compendium of physical activities: classification of energy cost of human physical activities. Med Sci Sports Exerc 1993, 25: 71–80.

    Article  PubMed  CAS  Google Scholar 

  22. Guralnik JM, Ferrucci L, Simonsick EM, et al. Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N Engl J Med 1995, 332: 556–61.

    Article  PubMed  CAS  Google Scholar 

  23. Radloff LS. The CES-D Scale: a self-report depression scale for research in the general population. Applied Psychological Measurement 1977, 1: 385–401.

    Article  Google Scholar 

  24. Guralnik JM, Fried LP, Simonsick EM, Kasper D, Lafferty ME. The women’s health and aging study: health and social characteristics of older women with disability. Bethesda, MD, National Institute on Aging. NIH Publication 1995, 95: 4009.

    Google Scholar 

  25. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975, 12: 189–98.

    Article  PubMed  CAS  Google Scholar 

  26. Launer LJ. Overview of incidence studies of dementia conducted in Europe. Neuroepidemiology 1992, 11(Suppl 1): 2–13.

    Article  PubMed  Google Scholar 

  27. Tombaugh TN, McIntyre NJ. The mini-mental state examination:a comprehensive review. J Am Geriatr Soc 1992, 40: 922–35.

    PubMed  CAS  Google Scholar 

  28. Laurine E, Lafitte D, Grégoire C, et al. Specific binding of dehydroepiandrosterone to the N terminus of the microtubule-associated protein MAP 2. J Biol Chem 2003, 278: 29979–86.

    Article  PubMed  CAS  Google Scholar 

  29. Bologa L, Sharma J, Roberts E. Dehydroepiandrosterone and its sulfated derivative reduce neuronal death and enhance astrocytic differentiation in brain cell cultures. J Neurosci Res 1987, 17: 225–34.

    Article  PubMed  CAS  Google Scholar 

  30. Compagnone NA, Mellon SH. Dehydroepiandrosterone: a potential signalling molecule for neocortical organization during development. Proc Natl Acad Sci USA 1998, 95: 4678–83.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Roberts E, Bologa L, Flood JF, Smith GE. Effects of dehydroepiandrosterone and its sulfate on brain tissue in culture and on memory in mice. Brain Res 1987, 406: 357–62.

    Article  PubMed  CAS  Google Scholar 

  32. Flood JF, Roberts E. Dehydroepiandrosterone sulfate improves memory in aging mice. Brain Res 1988, 448: 178–81.

    Article  PubMed  CAS  Google Scholar 

  33. Flood JF, Morley JE, Roberts E. Memory-enhancing effects in male mice of pregnenolone and steroids metabolically derived from it. Proc Natl Acad Sci U S A 1992, 89: 1567–71.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Majewska MD, Demirgoren S, Spivak CE, London ED. The neurosteroid dehydroepiandrosterone sulfate is an allosteric antagonist of the GABAA receptor. Brain Res 1990, 526: 143–6.

    Article  PubMed  CAS  Google Scholar 

  35. Demirgören S, Majewska MD, Spivak CE, London ED. Receptor binding and electrophysiological effects of dehydroepiandrosterone sulfate, an antagonist of the GABAA receptor. Neuroscience 1991, 45: 127–35.

    Article  PubMed  Google Scholar 

  36. Monnet FP, Mahé V, Robel P, Baulieu EE. Neurosteroids, via sigma receptors, modulate the [3H]norepinephrine release evoked by N-methyl-D-aspartate in the rat hippocampus. Proc Natl Acad Sci USA 1995, 92: 3774–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Dong LY, Cheng ZX, Fu YM, et al. Neurosteroid dehydroepiandrosterone sulphate enhance a spontaneous glutamate release in rat prelimbic cortex through activation of dopamine D1 and sigma-1 receptors. Neuropharmacology 2007, 52: 966–74.

    Article  PubMed  CAS  Google Scholar 

  38. Steffensen SC, Jones MD, Hales K, Allison DW. Dehydroepiandrosterone sulfate and estrone sulfate reduce GABA-recurrent inhibition in the hippocampus via muscarinic acetylcholine receptors. Hippocampus 2006, 16: 1080–90.

    Article  PubMed  CAS  Google Scholar 

  39. Abadie JM, Porter JR, Wright BE, Browne ES, Svec F. The effect of discontinuing dehydroepiandrosterone supplementation on Zucker rat food intake and hypothalamic neurotransmitters. Int J Obes Relat Metab Disord 1995, 19: 480–8.

    PubMed  Google Scholar 

  40. Kimonides VG, Khatibi NH, Svendsen CN, Sofroniew MV, Herbert J. Dehydroepiandrosterone (DHEA) and DHEA-sulfate (DHEAS) protect hippocampal neurons against excitatory amino acid-induced neurotoxicity. Proc Natl Acad Sci USA 1998, 95: 1852–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Bastianetto S, Ramassamy C, Poirier J, Quirion R. Dehydroepiandrosterone (DHEA) protects hippocampal cells from oxidative stress-induced damage. Brain Res Mol Brain Res 1999, 66: 35–41.

    Article  PubMed  CAS  Google Scholar 

  42. Kimonides VG, Spillantini MG, Sofroniew MV, Fawcett JW, Herbert J. Dehydroepiandrosterone antagonizes the neurotoxic effects of corticosterone and translocation of stress-activated protein kinase 3 in hippocampal primary cultures. Neuroscience 1999, 89: 429–36.

    Article  PubMed  CAS  Google Scholar 

  43. O’Brien JT, Schweitzer I, Ames D, Tuckwell V, Mastwyk M. Cortisol suppression by dexamethasone in the healthy elderly: effects of age, dexamethasone levels, and cognitive function. Biol Psychiatry 1994, 36: 389–94.

    Article  PubMed  Google Scholar 

  44. Sapolsky RM, Uno H, Rebert CS, Finch CE. Hippocampal damage associated with prolonged glucocorticoid exposure in primates. J Neurosci 1990, 10: 2897–902.

    PubMed  CAS  Google Scholar 

  45. Sapolsky RM. Glucocorticoids, stress, and their adverse neurological effects: relevance to aging. Exp Gerontol 1999, 34: 721–32.

    Article  PubMed  CAS  Google Scholar 

  46. Lupien SJ, Gaudreau S, Tchiteya BM, et al. Stress-induced declarative memory impairment in healthy elderly subjects: relationship to cortisol reactivity. J Clin Endocrinol Metab 1997, 82: 2070–5.

    PubMed  CAS  Google Scholar 

  47. Seeman TE, McEwen BS, Singer BH, et al. Increase in urinary cortisol excretion and memory declines: MacArthur studies on successful aging. J Clin Endocrinol Metab 1997, 82: 2458–65.

    PubMed  CAS  Google Scholar 

  48. Carlson LE, Sherwin BB. Relationships among cortisol (CRT), dehydroepiandrosterone-sulfate (DHEAS), and memory in a longitudinal study of healthy elderly men and women. Neurobiol Aging 1999, 20: 315–24.

    Article  PubMed  CAS  Google Scholar 

  49. Ceresini G, Morganti S, Rebechi I, et al. Evaluation on the circadian profiles of serum dehydroepiandrosterone (DHEA), cortisol, and cortisol/DHEA molar ratio after a single oral administration of DHEA in elderly subjects. Metabolism 2000, 49: 548–51.

    Article  PubMed  CAS  Google Scholar 

  50. Apostolova G, Schweizer RA, Balazs Z, Kostadinova RM, Odermatt A. Dehydroepiandrosterone inhibits the amplification of glucocorticoid action in adipose tissue. Am J Physiol Endocrinol Metab 2005, 288: E957–64.

    Article  PubMed  CAS  Google Scholar 

  51. Maurice T, Su TP, Privat A. Sigma1 (sigma 1) receptor agonist and neurosteroids attenuate B25-35-amyloid peptide-induced amnesia in mice through a common mechanism. Neuroscience 1998, 83: 413–28.

    Article  PubMed  CAS  Google Scholar 

  52. Wolkowitz OM, Kramer JH, Reus VI, et al; DHEA-Alzheimer’s Disease Collaborative Research. DHEA treatment of Alzheimer’s disease. A randomized, double blind, placebo-controlled study. Neurology 2003, 60: 1071–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Valenti MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valenti, G., Ferrucci, L., Lauretani, F. et al. Dehydroepiandrosterone sulfate and cognitive function in the elderly: The InCHIANTI Study. J Endocrinol Invest 32, 766–772 (2009). https://doi.org/10.1007/BF03346534

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03346534

Key-words

Navigation