Skip to main content
Log in

Testosterone acts as an efficacious vasodilator in isolated human pulmonary arteries and veins: Evidence for a biphasic effect at physiological and supra-physiological concentrations

  • Original Articles
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background: Testosterone is recognized to elicit vasodilatation in numerous vascular beds, however to date no study has investigated whether testosterone has this effect in the human pulmonary vasculature. Aim: To determine whether isolated human pulmonary arteries and veins dilate in response to testosterone and whether the response differs in relation to gender, endothelial function or location with the pulmonary vasculature. Methods: Intralobar pulmonary arteries [no.=44, diameter =581 (349) μm] and veins [no.=27, diameter =573 (302) μm] were dissected from lobectomy samples obtained from male and female patients [no.=40, age =69 (8) yr]. Vessels were mounted in an automated wire myograph, bathed in physiological saline at 37 C and pH 7.4, and loaded to their in vivo pressure. Vessels were preconstricted with noradrenaline (10 μM) and exposed to acetylcholine (1 μM) to assess endothelial function, washed and then preconstricted with potassium chloride (1–100 mM) followed by either cumulative concentrations of testosterone (1 nM-100 μM) or ethanol vehicle (<0.1%). Results: Significant marked vasodilatation was seen in all vessels, irrespective of size, gender and endothelial function at micromolar concentrations. Testosterone triggered significant vasodilatation at concentrations ≥10 nM in pulmonary arteries obtained from males, a response which was not observed in vessels from females. The maximal response at 100 μM was also significantly greater in male pulmonary arteries. Significant vasodilatation was only observed at physiological (nM) concentrations in pulmonary resistance arteries and pulmonary arteries with good endothelial function. Conclusion: Testosterone acts as an efficacious vasodilator in the human pulmonary vasculature, with dilatation observed at physiological concentrations in the male arterial resistance bed, dependent on the presence of an intact endothelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu FW, von Eckardstein A. Androgens and coronary artery disease. Endocr Rev 2003, 24: 183–217.

    Article  PubMed  CAS  Google Scholar 

  2. Liu PY, Death AK, Handelsman DJ. Androgens and cardiovascular disease. Endocr Rev 2003, 24: 313–40.

    Article  PubMed  CAS  Google Scholar 

  3. Jones RD, Nettleship JE, Kapoor D, Jones TH, Channer KS. Testosterone and atherosclerosis in aging men: Purported association and clinical implications. Am J Cardiovasc Drugs 2005, 5: 141–54.

    Article  PubMed  CAS  Google Scholar 

  4. Webb CM, McNeill JG, Hayward CS, de Zeigler D, Collins P. Effects of testosterone on coronary vasomotor regulation in men with coronary heart disease. Circulation 1999, 100: 1690–6.

    Article  PubMed  CAS  Google Scholar 

  5. Pugh PJ, Jones RD, West JN, Jones TH, Channer KS. Testosterone treatment for men with chronic heart failure. Heart 2004, 90: 446–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Dalonzo GE, Barst RJ, Ayres SM, et al. Survival in patients with primary pulmonary-hypertension — Results from a national prospective registry. Ann Intern Med 1991, 115: 343–9.

    Article  CAS  Google Scholar 

  7. Runo JR, Loyd JE. Primary pulmonary hypertension. Lancet 2003, 361: 1533–44.

    Article  PubMed  Google Scholar 

  8. Pugh PJ, Jones RD, Jones TH, Channer KS. Heart Failure as an inflammatory condition — Potential role for androgens as immune modulators. Eur J Heart Fail 2002, 4: 673–80.

    Article  PubMed  CAS  Google Scholar 

  9. Malkin CJ, Pugh PJ, Jones RD, Kapoor D, Channer KS, Jones TH. The effect of testosterone replacement on endogenous inflammatory cytokines and lipid profiles in hypogonadal men. J Clin Endocrinol Metab 2004, 89: 3313–8.

    Article  PubMed  CAS  Google Scholar 

  10. Smith AM, Jones RD, Channer KS. The influence of sex hormones upon pulmonary vascular reactivity: Possible vasodilator therapies for the treatment of pulmonary hypertension. Curr Vasc Pharmacol 2006, 4: 9–15.

    Article  PubMed  CAS  Google Scholar 

  11. Yue P, Chatterjee K, Beale C, Poole-Wilson PA, Collins P. Testosterone relaxes rabbit coronary arteries and aorta. Circulation 1995, 91: 1154–60.

    Article  PubMed  CAS  Google Scholar 

  12. Chou TM, Sudhir K, Hutchison SJ, et al. Testosterone induces dilation of canine coronary conductance and resistance arteries in vivo. Circulation 1996, 94: 2614–9.

    Article  PubMed  CAS  Google Scholar 

  13. Crews JK, Khalil RA. Antagonistic effects of 17 beta-estradiol, progesterone, and testosterone on Ca2+ entry mechanisms of coronary vasoconstriction. Arterioscler Thromb Vasc Biol 1999, 19: 1034–40.

    Article  PubMed  CAS  Google Scholar 

  14. English KM, Jones RD, Jones TH, Morice AH, Channer KS. Gender differences in the vasomotor effects of different steroid hormones in rat pulmonary and coronary arteries. Horm Metabol Res 2001, 33: 645–52.

    Article  CAS  Google Scholar 

  15. Deenadayalu VP, White RE, Stallone JN, Gao X, Garcia AJ. Testosterone relaxes coronary arteries by opening the large-conductance, calcium-activated potassium channel. Am J Physiol 2001, 281: H1720–7.

    CAS  Google Scholar 

  16. Jones RD, Pugh PJ, Hall J, Channer KS, Jones TH. Altered circulating hormone levels, endothelial function and vascular reactivity in the testicular feminised mouse. EurJ Endocrinol 2003, 148: 111–20.

    Article  CAS  Google Scholar 

  17. Jones RD, English KM, Pugh PJ, Morice AH, Jones TH, Channer KS. Pulmonary vasodilatory action of testosterone: Evidence of a calcium antagonistic action. J Cardiovasc Pharmacol 2002, 39: 814–23.

    Article  PubMed  CAS  Google Scholar 

  18. Tep-areenan P, Kendall DA, Randall MD. Testosterone-induced vasorelaxation in the rat mesenteric arterial bed is mediated predominantly via potassium channels. Br J Pharmacol 2002, 135: 735–40.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Malkin CJ, Jones RD, Pugh PJ, Jones TH, Channer KS. The effect of testosterone on ex-vivo vascular reactivity in man. Clin Sci (Lond9 2006, 111: 265–74.

    Article  CAS  Google Scholar 

  20. Ding AQ, Stallone JN. Testosterone-induced relaxation of rat aorta is androgen structure specific and involves K+ channel activation. J Appl Physiol 2001, 91: 2742–50.

    PubMed  CAS  Google Scholar 

  21. Crews JK, Khalil RA. Gender-specific inhibition of Ca2+ entry mechanisms of arterial vasoconstriction by sex hormones. Clin Exp Pharmacol Physiol 1999, 26: 707–15.

    Article  PubMed  CAS  Google Scholar 

  22. Tep-areenan P, Kendall DA, Randall MD. Mechanisms of vasorelaxation to testosterone in the rat aorta. Eur J Pharmacol 2003, 465: 125–32.

    Article  PubMed  CAS  Google Scholar 

  23. Scragg JL, Jones RD, Channer KS, Jones TH, Peers C. Testosterone is a potent inhibitor of L-type Ca2+ channels. Biochem Biophys Res Comm 2004, 318: 503–6.

    Article  PubMed  CAS  Google Scholar 

  24. Hall J, Jones RD, Jones TH, Channer KS, Peers C. Selective inhibition of L-type voltage-gated calcium channels in A7r5 cells by physiological levels of testosterone. Endocrinology 2006, 147: 2675–80.

    Article  PubMed  CAS  Google Scholar 

  25. Hall J, Jones TH, Channer KS, Jones RD. Mechanisms of agonist-induced constriction in isolated human pulmonary arteries. Vasc Pharmacol 2009, 51: 8–12.

    Article  CAS  Google Scholar 

  26. Jones RD, Pugh PJ, Jones TH, Channer KS. The vasodilatory action of testosterone: a potassium-channel opening or calcium antagonistic action? Br J Pharmacol 2003, 138: 733–44.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Woodmansey PA, O’Toole L, Channer KS, Morice AH. Acute pulmonary vasodilatory properties of amlodipine in humans with pulmonary hypertension. Heart 1996, 75: 171–3.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Rubin LJ, Nicod P, Hillis LD, Firth BG. Treatment of primary pulmonary hypertension with nifedipine — A haemodynamic and scintigraphic evaluation. Ann Intern Med 1983, 99: 433–8.

    Article  PubMed  CAS  Google Scholar 

  29. Rich S, Kaufmann E, Levy PS. The effect of high doses of calcium channel blockers on survival in primary pulmonary hypertension. N Engl J Med 1992, 327: 76–81.

    Article  PubMed  CAS  Google Scholar 

  30. Malkin CJ, Pugh PJ, Morris PD, et al. Testosterone replacement in hypogonadal men with angina improves ischaemic threshold and quality of life. Heart 2004, 90: 871–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. Jones MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rowell, K.O., Hall, J., Pugh, P.J. et al. Testosterone acts as an efficacious vasodilator in isolated human pulmonary arteries and veins: Evidence for a biphasic effect at physiological and supra-physiological concentrations. J Endocrinol Invest 32, 718–723 (2009). https://doi.org/10.1007/BF03346526

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03346526

Key-words

Navigation