Skip to main content
Log in

Assessment of left ventricular functions by tissue Doppler echocardiography in patients with Cushing’s disease

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Objective: To verify whether tissue Doppler imaging (TDI) could contribute to a better understanding of the natural history of cardiomyopathy in active Cushing’s disease (CD), through its enhanced sensitivity to diastolic dysfunction, and identifying preliminary regional signs of systolic dysfunction before the appearance of clinical symptoms of cardiac pathologies. Methods: Eleven women with newly diagnosed CD and 32 control cases, purposely matched for gender, age, body mass index and co-incidental diseases were enrolled in this study. Echocardiographic examinations were assessed by conventional echocardiography and tissue Doppler imaging. The peak systolic velocity (S’m), early diastolic myocardial peak velocity (E’m), late diastolic myocardial peak velocity (A’m), isovolumic acceleration (IVA), myocardial pre-contraction time (PCT’m), myocardial contraction time (CT’m) and myocardial relaxation time (RT’m) were measured at septal and lateral mitral anulus. Results: In TDI, E’m and, E’m/A’m ratio were significantly lower, and PCT’m/CT’m ratio was higher, S’m, A’m, peak early diastole/E’m ratio, PCT’m, and isovolumetric myocardial relaxation time values were similar at lateral and septal anulus in patients with CD than controls (p>0.05). Lateral and septal anulus IVA were significantly lower in patients with CD than the control group (p<0.05). Correlation analysis showed that IVA time at lateral anulus correlated positively with S’m at lateral anulus (r=0.58; p=0.002) and IVA time at septal anulus correlated positively with S’m at septal anulus (r=0.51; p=0.008). Conclusion: Our study confirms that patients with CD have impaired diastolic function. More importantly, we also demonstrated an impairment of myocardial systolic function in patients with CD by TDI. We recommend using TDI in addition to conventional echocardiography parameters for the cardiovascular risk assessment of patients with Cushing’ syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aron DC, Findling JW, Tyrrell JB. Cushing’s disease. Endocrinol Metab Clin North Am 1987, 16: 705–30.

    PubMed  CAS  Google Scholar 

  2. Grua JR, Nelson DH. ACTH-producing pituitary tumors. Endocrinol Metab Clin North Am 1991, 20: 319–62.

    PubMed  CAS  Google Scholar 

  3. Young WF Jr, Scheithauer BW, Gharib H, Laws ER Jr, Carpenter PC. Cushing’s syndrome due to primary multinodular corticotroph hyperplasia. Mayo Clin Proc 1988, 63: 256–62.

    Article  PubMed  Google Scholar 

  4. Colao A, Pivonello N, Spiezia S, et al. Persistence of increased cardiovascular risk in patients with Cushing’s disease after five years of successful cure. J Clin Endocrinol Metab 1999, 84: 2664–72.

    Article  PubMed  CAS  Google Scholar 

  5. Fallo F, Budano S, Sonino N, Muiesan ML, Agabiti-Rosei E, Boscaro M. Left ventricular structural characteristics in Cushing’s syndrome. J Hum Hypertens 1994, 8: 509–13.

    PubMed  CAS  Google Scholar 

  6. Boscaro M, Barzon L, Fallo F, Sonino N. Cushing’s syndrome. Lancet 2001, 357: 783–91.

    Article  PubMed  CAS  Google Scholar 

  7. Muiesan ML, Lupia M, Salvetti M, et al. Left ventricular structural and functional characteristics in Cushing’s syndrome. J Am Coll Cardiol 2003, 41: 2275–9.

    Article  PubMed  Google Scholar 

  8. Sugihara N, Shimizu M, Kita Y, et al. Cardiac characteristics and postoperative courses in Cushing’s syndrome. Am J Cardiol 1992, 69: 1475–80.

    Article  PubMed  CAS  Google Scholar 

  9. Lusiani L, Ronsisvalle G, Visona A, et al. Acromegalic cardiomyopathy. An echocardiographic study. J Endocrinol Invest 1988, 11: 159–64.

    CAS  Google Scholar 

  10. Trambaiolo P, Tonti G, Salustri A, Fedele F, Sutherland G. New insights into regional systolic and diastolic left ventricular function using tissue Doppler echocardiography: from qualitative analysis to a quantitative approach. J Am Soc Echocardiogr 2001, 14: 85–96.

    Article  PubMed  CAS  Google Scholar 

  11. Gulati VK, Katz WE, Follansbee WP, Gorcsan J. Mitral annular descent velocity by tissue Doppler echocardiography as an index of global left ventricularfunction. Am J Cardiol 1996, 77: 979–84.

    Article  PubMed  CAS  Google Scholar 

  12. Oki T, Tabata T, Mishiro Y, et al. Pulsed tissue Doppler imaging of left ventricular systolic and diastolic wall motion velocities to evaluate differences between long and short axes in healthy subjects. J Am Soc Echocardiogr 1999, 12: 308–13.

    Article  PubMed  CAS  Google Scholar 

  13. Shan DJ, DeMaria A, Kisslo J, Weyman A. Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. Circulation 1978, 58: 1072–83.

    Article  Google Scholar 

  14. Devereux RB, Reichek N. Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method. Circulation 1977, 55: 612–8.

    Google Scholar 

  15. Plotz CM, Knowlton AI, Ragan C. The natural history of Cushing’s syndrome. Am J Med 1952, 13: 597–614.

    Article  PubMed  CAS  Google Scholar 

  16. Arnaldi G, Mancini T, Polenta B, Boscaro M. Cardiovascular risk in Cushing’s syndrome. Pituitary 2004, 7: 253–6.

    Article  PubMed  Google Scholar 

  17. Soffer LJ, lannaccone A, Gabulooe JC. Cushing’s syndrome: a study of 50 patients. Am J Med 1961, 30: 129–39.

    Article  Google Scholar 

  18. Pivonello R, Faggiano A, Lombardi G, Colao A. The metabolic syndrome and cardiovascular risk in Cushing’s syndrome. Endocrinol Metab Clin North Am 2005, 34: 327–39.

    Article  PubMed  CAS  Google Scholar 

  19. Nishimura RA, Tajik AJ. Evalution of diastolic filling of left ventricle in health and disease: Doppler echocardiography is the clinician’s Rosetta Stone. J Am Coll Cardiol 1997, 30: 8–18.

    Article  PubMed  CAS  Google Scholar 

  20. Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quinones MA. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relation and estimation of filling pressures. J Am Coll Cardiol 1997, 30: 1527–33.

    Article  PubMed  CAS  Google Scholar 

  21. Nagueh SF, Mikati I, Kopelen HA, et al. Doppler estimation of left ventricular filling pressure in sinus tachycardia: a new application of tissue Doppler imaging. Circulation 1998, 98: 1644–50.

    Article  PubMed  CAS  Google Scholar 

  22. Rivas-Gotz C, Manolios M, Thohan V, Nagueh SF. Impact of left ventricular ejection fraction on estimation of left ventricular filling pressure using tissue Doppler and flow propagation velocity. Am J Cardiol 2003, 91: 780–4.

    Article  PubMed  Google Scholar 

  23. Ommen SR, Nishimura RA, Appleton CP, et al. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left venticular filling pressures: a comparative simultaneous Doppler catheterization study. Circulation 2000, 102: 1788–94.

    Article  PubMed  CAS  Google Scholar 

  24. Vogel M, Cheung MM, Li J, et al. Noninvasive assessment of left ventricular force frequency relationship using tissue Doppler-derived isovolumetric acceleration: validation in an animal study. Circulation 2003, 107: 1647–52.

    Article  PubMed  Google Scholar 

  25. Andersen NH, Terkelsen CS, Sloth E, Poulsen SH. Influence of preload alterations on parameters of systolic left ventricular longaxis function: a Doppler tissue study. J Am Soc Echocardiogr 2004, 17: 941–7.

    Article  PubMed  Google Scholar 

  26. Dalsgaard M, Snyder EM, Kjaergaard J, Johnson BD, Hassager C, Oh JK. Isovolumetric acceleration measured by tissue Doppler echocardiography is preload independent in healthy subjects. Echocardiography 2007, 24: 572–9.

    Article  PubMed  Google Scholar 

  27. Bonow RO, Udelson JE. Left ventricular diastolic dysfunction as a cause of congestive heart failure. Mechanism and management. Ann Intern Med 1992, 117: 502–10.

    Article  CAS  Google Scholar 

  28. Petrie MC, Caruana L, Berry C, McMurray JJ. “Diastolic heart failure” or heart failure caused by subtle left ventricular systolic dysfunction. Heart 2002, 87: 29–31.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ersoy MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayram, N.A., Ersoy, R., Aydin, C. et al. Assessment of left ventricular functions by tissue Doppler echocardiography in patients with Cushing’s disease. J Endocrinol Invest 32, 248–252 (2009). https://doi.org/10.1007/BF03346461

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03346461

Key-words

Navigation