Skip to main content
Log in

The relationship among renal injury, changed activity of renal 1-α hydroxylase and bone loss in elderly rats with insulin resistance or Type 2 diabetes mellitus

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Backround and objective: Chronic kidney disease can lead to a decrease in active vitamin D [1,25-(OH)2D], which may be reversed by 1-α hydroxyvitamin D [1-α(OH)D]. Renal 1-α hydroxylase, expressed in renal tubular epithelial cells, is a key enzyme in the synthesis of 1,25-(OH)2D. 1,25-(OH)2D plays an important role in the regulation of calcium and phosphate metabolism, and its deficiency can result in osteoporosis. Type 2 diabetes mellitus (T2DM) and insulin resistance (IR) are associated with renal injury, decrease in 1,25-(OH)2D and bone loss. The study aimed to explore the relationship among renal injury, decrease in 1,25-(OH)2D and bone loss in the presence of IR or T2DM, as well as the role of renal 1-α hydroxylase in the process. Materials and methods: Fifty 18-month-old male Wistar rats were randomized into 5 groups: normal control group (Group N), IR group (Group I), T2DM group (Group D), No.1 treatment group (Group T1), and No.2 treatment group (Group T2), 10 in each group. High-fat diet was administered to induce IR, while high-fat diet and low-dose streptozotocin were jointly applied to induce T2DM. Rats in Groups T1 and T2 were treated with vitamin D and 1-α(OH)D, respectively. At week 12, IR was determined by the use of euglycemic insulin clamp technique for rats in each group, and then glucose infusion rate (GIR) was calculated. Meanwhile, urinary albumin (UA), serum 25-(OH)D and 1,25-(OH)2D levels were determined by radioimmunoassay. After the rats were sacrificed, bone mineral density (BMD) in femoral bone and lumbar vertebrae was measured by the use of dual energy X-ray absorption. Results: The GIR in Group N was significantly higher than that of the other 4 groups (p<0.01). Compared with Groups N (p<0.01) or I (p<0.05), the UA levels in Groups D, T1, and T2 were obviously higher. The UA level in Group I was higher than that of Group N, but the difference was not significant (p>0.05). In Groups D and I, the UA levels showed a negative correlation with GIR. No significant difference was observed in the levels of 25-hydroxyvitamin D [25-(OH)D]. The levels of 1,25-(OH)2D in Groups D and T1 were markedly lower than that of Groups N or T2 (p<0.01). The 1,25-(OH)2D level in Group I was lower than that of Group N (p<0.05), but higher than that of Group D (p<0.01). The 1,25-(OH)2D level in Group T2 was nearly equivalent to that of Group N. In Groups D and I, the levels of 1,25-(OH)2D were negatively correlated with UA, and positively correlated with GIR. The BMD levels in lumbar vertebrae or femoral bone in Groups D and T1 were similar, but both were lower than that of Groups T2 (p<0.05) and N (p<0.01). The BMD levels were lower in Groups I and T2 compared with that of Group N (p<0.05), but higher than that of Groups D and T1 (p<0.05). The BMD levels in lumbar vertebrae or femoral bone in Groups I and D were positively correlated with GIR. The BMD level in lumbar vertebrae or femoral bone in Group D showed negative correlation with UA. Conclusion: In elderly rats with T2DM or IR, renal injury may cause decreased activity of renal 1-α hydroxylase, which may result in bone loss and disturbance in VD metabolism, mainly manifesting as a significant reduction in the 1,25-(OH)2D level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parvanova AI, Trevisan R, Iliev IP, et al. Insulin resistance and microalbuminuria: a cross-sectional, case-control study of 158 patients with type 2 diabetes and different degrees of urinary albumin excretion. Diabetes 2006, 55: 1456–62.

    Article  PubMed  CAS  Google Scholar 

  2. Hoehner CM, Greenlund KJ, Rith-Najarian S, Casper ML, McClellan WM. Association of the insulin resistance syndrome and microalbuminuria among nondiabetic native Americans. The Inter-Tribal Heart Project. J Am Soc Nephrol 2002, 13: 1626–34.

    Article  CAS  Google Scholar 

  3. Mizuno M, Sada T, Kato M, Koike H. Renoprotective effects of blockade of angiotensin II AT1 receptors in an animal model of type 2 diabetes. Hypertens Res 2002, 25: 271–8.

    Article  PubMed  CAS  Google Scholar 

  4. Kawano K, Hirashima T, Mori S, Saitoh Y, Kurosumi M, Natori T. Spontaneous long-term hyperglycemic rat with diabetic complications: Otsuka Long-Evans Tokushima Fatty (OLETF) strain. Diabetes 1992, 41: 1422–8.

    Article  PubMed  CAS  Google Scholar 

  5. Bader R, Bader H, Grund KE, Mackensen-Haen S, Christ H, Bohle A. Structure and function of the kidney in diabetic glomerulosclerosis: correlations between morphological and functional parameters. Pathol Res Pract 1980, 167: 204–16.

    Article  PubMed  CAS  Google Scholar 

  6. Gilbert RE, Cooper ME. The tubulointerstitium in progressive diabetic kidney disease: more than an aftermath of glomerular injury? Kidney Int 1999, 56: 1627–37.

    Article  PubMed  CAS  Google Scholar 

  7. Nath KA. The tubulointerstitium in progressive renal disease. Kidney Int 1998, 54: 992–4.

    Article  PubMed  CAS  Google Scholar 

  8. Nath KA. Tubulointerstitial changes as a major determinant in the progression of renal damage. Am J Kidney Dis 1992, 20: 1–17.

    PubMed  CAS  Google Scholar 

  9. Ortiz A, Ziyadeh FN, Neilson EG. Expression of apoptosis-regulatory genes in renal proximal tubular epithelial cells exposed to high ambient glucose and in diabetic kidneys. J Investig Med 1997, 45: 50–6.

    PubMed  CAS  Google Scholar 

  10. Wolf G. Cell cycle regulation in diabetic nephropathy. Kidney Int Suppl 2000, 77: 59–66.

    Article  Google Scholar 

  11. Ziyadeh FN. Significance of tubulointerstitial changes in diabetic renal disease. Kidney Int Suppl 1996, 54: S10–3.

    PubMed  CAS  Google Scholar 

  12. Eddy AA. Molecular insights into renal interstitial fibrosis. J Am Soc Nephrol 1999, 7: 2495–508.

    Google Scholar 

  13. Cooper ME, Gilbert RE, Jerums G. Diabetic vascular complications. Clin Exp Pharmacol Physiol 1997, 24: 770–5.

    Article  PubMed  CAS  Google Scholar 

  14. Cooper ME. Pathogenesis, prevention, and treatment of diabetic nephropathy. Lancet 1998, 352: 213–9.

    Article  PubMed  CAS  Google Scholar 

  15. Yaqoob M, McClelland P, Patrick AW, Stevenson A, Mason H, Bell GM. Tubulopathy with macroalbuminuria due to diabetic nephropathy and primary glomerulonephritis. Kidney Int Suppl 1994, 47: S101–4.

    PubMed  CAS  Google Scholar 

  16. Yaqoob M, McClelland P, Patrick AW, et al. Evidence of oxidant injury and tubular damage in early diabetic nephropathy. QJM 1994, 87: 601–7.

    PubMed  CAS  Google Scholar 

  17. Lane PH, Steffes MW, Fioretto P, Mauer SM. Renal interstitial expansion in insulin-dependent diabetes mellitus. Kidney Int 1993, 43: 661–7.

    Article  PubMed  CAS  Google Scholar 

  18. Jones SC, Saunders HJ, Pollock CA. High glucose increases growth andcollagen synthesis in cultured human tubulointerstitial cells. Diabet Med 1999, 16: 932–8.

    Article  PubMed  CAS  Google Scholar 

  19. Ueno M, Kawashima S, Nishi S, et al. Tubulointerstitial lesions in non-insulin dependent diabetes mellitus. Kidney Int Suppl 1997, 63: S191–4.

    PubMed  CAS  Google Scholar 

  20. Marcussen N. Atubular glomeruli and the structural basis for chronic renal failure. Lab Invest 1992, 66: 265–84.

    PubMed  CAS  Google Scholar 

  21. Taft JL, Nolan CJ, Yeung SP, Hewitson TD, Martin FI. Clinical and histological correlations of decline in renal function in diabetic patients with proteinuria. Diabetes 1994, 43: 1046–51.

    Article  PubMed  CAS  Google Scholar 

  22. Holm J, Hemmingsen L, Nielsen NV. Low-molecular-mass proteinuria as a marker of proximal renal tubular dysfunction in normo- and microalbuminuric non-insulin-dependent diabetic subjects. Clin Chem 1993, 39: 517–9.

    PubMed  CAS  Google Scholar 

  23. Hong CY, Chia KS. Markers of diabetic nephropathy. J Diabetes Complications 1998, 12: 43–60.

    Article  PubMed  CAS  Google Scholar 

  24. Nuyts GD, Yaqoob M, Nouwen EJ, et al. Human urinary intestinal alkaline phosphatase as an indicator of S3-segment-specific alterations in incipient diabetic nephropathy. Nephrol Dial Transplant 1994, 9: 377–81.

    PubMed  CAS  Google Scholar 

  25. Pfleiderer S, Zimmerhackl LB, Kinne R, et al. Renal proximal and distal tubular function is attenuated in diabetes mellitus type 1 as determined by the renal excretion of alpha 1-microglobulin and Tamm-Horsfall protein. Clin Investig 1993, 71: 972–7.

    Article  PubMed  CAS  Google Scholar 

  26. Hsu CH, Patel S. Uremic plasma contains factors inhibiting 1 alpha-hydroxylase activity. J Am Soc Nephrol 1992, 3: 947–52.

    PubMed  CAS  Google Scholar 

  27. Lobaugh B, Boass A, Garner SC, et al. Intensity of lactation modulates renal 1 alpha-hydroxylase and serum 1,25(OH)2D in rats. Am J Physiol 1992, 262: E840–4.

    PubMed  CAS  Google Scholar 

  28. Schneider LE, Schedl HP, McCain T, Haussler MR. Experimental diabetes reduces circulating 1,25-dihydroxyvitamin D in the rat. Science 1977, 196: 1452–4.

    Article  PubMed  CAS  Google Scholar 

  29. Aksoy H, Akçay F, Kurtul N, Baykal O, Avci B. Serum 1,25 dihydroxy vitamin D (1,25(OH)2D3), 25 hydroxy vitamin D (25(OH)D) and parathormone levels in diabetic retinopathy. Clin Biochem 2000, 33: 47–51.

    Article  PubMed  CAS  Google Scholar 

  30. Chung YS, Lee MD, Lee SK, Kim HM, Fitzpatrick LA. HMG-CoA reductase inhibitors increase BMD in type 2 diabetes mellitus patients. J Clin Endocrinol Metab 2000, 85: 1137–42.

    PubMed  CAS  Google Scholar 

  31. Gregorio F, Cristallini S, Santeusanio F, Filipponi P, Fumelli P. Osteopenia associated with non-insulin-dependent diabetes mellitus: what are the causes? Diabetes Res Clin Pract 1994, 23: 43–54.

    Article  PubMed  CAS  Google Scholar 

  32. Nakashima A, Nakashima R, Ito T, Masaki T, Yorioka N. HMG-CoA reductase inhibitors prevent bone loss in patients with Type 2 diabetes mellitus. Diabetic Med 2004, 21: 1020–4.

    Article  PubMed  CAS  Google Scholar 

  33. Takizawa M, Kameyama K, Maruyama M, Ishida H. Bone loss in type 2 diabetes mellitus-diabetic osteopenia. Nippon Rinsho 2003, 61: 287–91.

    PubMed  Google Scholar 

  34. Al-Maatouq MA, El-Desouki MI, Othman SA, Mattar EH, Babay ZA, Addar M. Prevalence of osteoporosis among postmenopausal females with diabetes mellitus. Saudi Med J 2004, 25: 1423–7.

    PubMed  Google Scholar 

  35. Ikeda T, Manabe H, Iwata K. Clinical significance of alendronate in postmenopausal type 2 diabetes mellitus. Diabetes Metab 2004, 30: 355–8.

    Article  PubMed  CAS  Google Scholar 

  36. Sieradzki J, Trznadel-Morawska I, Olszanecki P. Bone density in type 2 diabetes as related to obesity and adrenal function. Pol Arch Med Wewn 1998, 100: 125–32.

    PubMed  CAS  Google Scholar 

  37. Bartos V, Jirkovská A, Kasalický P, Smahelová A, Vondra K, Skibová J. Osteopenia and osteoporosis in diabetic women over 40 years of age. Cas Lek Cesk 2001, 140: 299–301.

    PubMed  CAS  Google Scholar 

  38. Nicodemus KK, Folsom AR. Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care 2001, 24: 1192–7.

    Article  PubMed  CAS  Google Scholar 

  39. Janghorbani M, Feskanich D, Willett W, Hu F. Prospective study of diabetes and risk of hip fracture: the Nurses’ Health Study. Diabetes Care 2006, 29: 1573–8.

    Article  PubMed  Google Scholar 

  40. Boucher BJ. Hypovitaminosis D and risk of Type 2 diabetes in British South Asians. Diabet Med 2006, 23: 336.

    Article  PubMed  CAS  Google Scholar 

  41. Mathieu C, Gysemans C, Giulietti A, Bouillon R. Vitamin D and diabetes. Diabetologia 2005, 48: 1247–57.

    Article  PubMed  CAS  Google Scholar 

  42. Pietschmann P, Schernthaner G, Woloszczuk W. Serum osteocalcin levels in diabetes mellitus: analysis of the type of diabetes and microvascular complications. Diabetologia 1988, 31: 892–5.

    Article  PubMed  CAS  Google Scholar 

  43. Pittas AG, Dawson-Hughes B, Li T, et al. Vitamin D and calcium intake in relation to type 2 diabetes in women. Diabetes Care 2006, 29: 650–6.

    Article  PubMed  CAS  Google Scholar 

  44. Borissova AM, Tankova T, Kirilov G, Dakovska L, Kovacheva R. The effect of vitamin D3 on insulin secretion and peripheral insulin sensitivity in type 2 diabetic patients. Int J Clin Pract 2003, 57: 258–61.

    PubMed  CAS  Google Scholar 

  45. Thrailkill KM, Lumpkin CK, Bunn RC, et al. Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am J Physiol Endocrinol Metab 2005, 289: E735–45.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Rubin CT, Lanyon LE. Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 1985, 37: 411–7.

    Article  PubMed  CAS  Google Scholar 

  47. Blaedel WJ, Uhl JM. Nature of materials in serum that interfere in the glucose oxidase-peroxidase-O-dianisidine method for glucose, and their mode of action. Clin Chem 1975, 21: 119–24.

    PubMed  CAS  Google Scholar 

  48. Straczkowski M, Stepień A, Kowalska I, et al. Comparison of simple indices of insulin sensitivity using the euglycemic hyperinsulinemic clamp technique. Med Sci Monit 2004, 10: CR480–4.

    PubMed  CAS  Google Scholar 

  49. Watts GF, Albano JD, Bennett JE, Morris RW, Shaw KM, Polak A. Assessment of new radioimmunoassay kit for determining urinary albumin at low concentrations: comparison with radial immunodiffusion. J Clin Pathol 1986, 39: 1151–4.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Lilley J, Walters BG, Heath DA, et al. In vivo and in vitro precision for bone density measured by dual-energy X-ray absorption. Osteoporos Int 1991, 1: 141–6.

    Article  PubMed  CAS  Google Scholar 

  51. Frumar AM, Meldrum DR, Geola F, et al. Relationship of fasting urinary calcium to circulating estrogen and body weight in postmenopausal women. J Clin Endocrinol Metab 1980, 50: 70–5.

    Article  PubMed  CAS  Google Scholar 

  52. Johnston CC Jr, Hui SL, Longcope. Bone mass and sex steroid concentrations in postmenopausal Caucasian diabetics. Metabolism 1985, 34: 544–50.

    Article  PubMed  Google Scholar 

  53. Reid IR, Evans MC, Cooper GJ, Ames RW, Stapleton J. Circulating insulin levels are related to bone density in normal postmenopausal women. Am J Physiol 1993, 265: E655–9

    PubMed  CAS  Google Scholar 

  54. Barrett-Connor E, Kritz-Silverstein D. Does hyperinsulinemia preserve bone? Diabetes Care 1996, 19: 1388–92.

    Article  PubMed  CAS  Google Scholar 

  55. Akune T, Ogata N, Hoshi K, et al. Insulin receptor substrate-2 maintains predominance of anabolic function over catabolic function of osteoblasts. J Cell Biol 2002, 159: 147–56.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Ogata N, Chikazu D, Kubota N, et al. Insulin receptor substrate-1 in osteoblast is indispensable for maintaining bone turnover. J Clin Invest 2000, 105: 935–43.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Harada S, Rodan GA. Control of osteoblast function and regulation of bone mass. Nature 2003, 423: 349–55.

    Article  PubMed  CAS  Google Scholar 

  58. Hauschka PV, Lian JB, Cole DE, Gundberg CM. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev 1989, 69: 990–1047.

    PubMed  CAS  Google Scholar 

  59. Lee NK, Sowa H, Hinoi E, et al. Endocrine regulation of energy metabolism by the skeleton. Cell 2007, 130: 456–69.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Q. Huang MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, C.Q., Ma, G.Z., Tao, M.D. et al. The relationship among renal injury, changed activity of renal 1-α hydroxylase and bone loss in elderly rats with insulin resistance or Type 2 diabetes mellitus. J Endocrinol Invest 32, 196–201 (2009). https://doi.org/10.1007/BF03346452

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03346452

Key-words

Navigation