Skip to main content

Advertisement

Log in

Blood coagulation and fibrinolysis in male patients with hypogonadotropic hypogonadism: Plasma factor V and factor X activities increase in hypogonadotropic hypogonadism

  • Original Articles
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background and objectives: In men, androgens have both pro- and anti-thrombotic effects. Androgen deficiency in men is associated with an increased incidence of cardiovascular disease (CVD). However, the influence of hypogonadism on hemostasis is controversial. Little is known about hemostatic features of male patients with idiopathic hypogonadotropic hypogonadism (IHH). Thus, the aim of the present study was to evaluate the markers of endogenous coagulation and fibrinolysis, and to investigate the relationships between endogenous sex hormones and hemostatic parameters and serum lipid profile in men with IHH. Design and methods: Seventeen patients with IHH and 20 age-matched healthy controls were included in the study. Prothrombin time (PT), activated partial thromboplastin time (aPTT), fibrinogen, factors (F) V, VII, VIII, IX, and X activities, von Willebrand factor (vWF), antithrombin III (AT III), protein C, protein S, tissue plasminogen activator (t-PA), and tissue plasminogen activator inhibitor (PAI-1), as well as common lipid variables, were measured. The relationships between serum sex hormones and these hemostatic parameters were examined. Results:Compared with the control subjects, platelet count, FV, FX, and protein C activities were significantly increased in patients with IHH (p<0.01, p<0.05, p<0.01, and p<0.05, respectively), whereas AT III was decreased (p<0.05). Fibrinogen, FVIII, vWF, t-PA, PAI-1, and the other coagulation/fibrinolysis parameters and lipid profile in patients with IHH were not different from the controls. In patients with IHH, we showed that serum LH level was negatively correlated with fibrinogen (r: −0.78, p<0.01) and protein C (r: −0.55, p<0.05) and positively correlated with t-PA (r: 0.53, p<0.05). Serum FSH levels inversely correlated with fibrinogen (r: −0.75, p<0.01). Interpretation and conclusions: We found some differences in the hemostatic parameters between the patients with IHH and healthy controls. Increased platelet count, FV and FX activities and decreased AT III levels in patients with IHH represent a potential hypercoagulable state, which might augment the risk for atheroscleroic and atherothrombotic complications. Therefore, IHH may be associated with an increased risk of CVD. However, sex hormones may play a role at different levels of the complex hemostatic system in patients with IHH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Winkler UH. Effects of androgens on haemostasis. Maturitas 1996, 24: 147–55.

    Article  PubMed  CAS  Google Scholar 

  2. Kahn NN, Sinha AK, Spungen AM, Bauman WA. Effects of oxandrolone, an anabolic steroid, on hemostasis. Am J Hematol 2006, 81: 95–100.

    Article  PubMed  CAS  Google Scholar 

  3. Jeppesen LL, Jørgensen HS, Nakayama H, Raaschou HO, Olsen TS, Winther K. Decreased serum testosterone in men with acute ischemic stroke. Arterioscler Thromb Vasc Biol 1996, 16: 749–54.

    Article  PubMed  CAS  Google Scholar 

  4. Pearson TA, LaCava J, Weil HF. Epidemiology of thrombotic-hemostatic factors and their associations with cardiovascular disease. Am J Clin Nutr 1997, 65 (5 Suppl): 1674S–82S.

    PubMed  CAS  Google Scholar 

  5. Johnson M, Ramey E, Ramwell PW. Androgen-mediated sensitivity in platelet aggregation. Am J Physiol 1977, 232: H381–5.

    PubMed  CAS  Google Scholar 

  6. Rosenblum WI, el-Sabban F, Nelson GH, Allison TB. Effects in mice of testosterone and dihydrotestosterone on platelet aggregation in injured arterioles and ex vivo. Thromb Res 1987, 45: 719–28.

    Article  PubMed  CAS  Google Scholar 

  7. Weidemann W, Hanke H. Cardiovascular effects of androgens. Cardiovasc Drug Rev 2002, 20: 175–98.

    Article  PubMed  CAS  Google Scholar 

  8. Caron P, Bennet A, Camare R, Louvet JP, Boneu B, Sié P. Plasminogen activator inhibitor in plasma is related to testosterone in men. Metabolism 1989, 38: 1010–5.

    Article  PubMed  CAS  Google Scholar 

  9. De Pergola G, De Mitrio V, Sciaraffia M, et al. Lower androgenicity is associated with higher plasma levels of prothrombotic factors irrespective of age, obesity, body fat distribution, and related metabolic parameters in men. Metabolism 1997, 46: 1287–93.

    Article  PubMed  Google Scholar 

  10. Glueck CJ, Glueck HI, Stroop D, Speirs J, Hamer T, Tracy T. Endogenous testosterone, fibrinolysis, and coronary heart disease risk in hyperlipidemic men. J Lab Clin Med 1993, 122: 412–20.

    PubMed  CAS  Google Scholar 

  11. Yang XC, Jing TY, Resnick LM, Phillips GB. Relation of hemostatic risk factors to other risk factors for coronary heart disease and to sex hormones in men. Arterioscler Thromb 1993, 13: 467–71.

    Article  PubMed  CAS  Google Scholar 

  12. Sobel MI, Winkel CA, Macy LB, Liao P, Bjornsson TD. The regulation of plasminogen activators and plasminogen activator inhibitor type 1 in endothelial cells by sex hormones. Am J Obstet Gynecol 1995, 173: 801–8.

    Article  PubMed  CAS  Google Scholar 

  13. Bonithon-Kopp C, Scarabin PY, Bara L, Castanier M, Jacqueson A, Roger M. Relationship between sex hormones and haemostatic factors in healthy middle-aged men. Atherosclerosis 1988, 71: 71–6.

    Article  PubMed  CAS  Google Scholar 

  14. Heller RF, Meade TW, Haines AP, Stirling Y, Miller NE, Lewis B. Inter-relationships between factor VII, serum testosterone and plasma lipoproteins. Thromb Res 1982, 28: 423–5.

    Article  PubMed  CAS  Google Scholar 

  15. Anderson RA, Wallace EM, Wu FC. Effect of testosterone enanthate on serum lipoproteins in man. Contraception 1995, 52: 115–9.

    Article  PubMed  CAS  Google Scholar 

  16. Fearnley GR, Chakrabarti R. Increase of blood fibrinolytic activity by testosterone. Lancet 1962, 2: 128–32.

    Article  PubMed  CAS  Google Scholar 

  17. Smith AM, English KM, Malkin CJ, Jones RD, Jones TH, Channer KS. Testosterone does not adversely affect fibrinogen or tissue plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1) levels in 46 men with chronic stable angina. Eur J Endocrinol 2005, 152: 285–91.

    Article  PubMed  CAS  Google Scholar 

  18. Beran M, Spitzer G, Verma DS. Testosterone and synthetic and androgens improve the in vitro survival of human marrow progenitor cells in serum-free suspension cultures. J Lab Clin Med 1982, 99: 247–53.

    PubMed  CAS  Google Scholar 

  19. Sullivan PS, Jackson CW, McDonald TP. Castration decreases thrombocytopoiesis and testosterone restores platelet production in castrated BALB/c mice: evidence that testosterone acts on a bipotential hematopoietic precursor cell. J Lab Clin Med 1995, 125: 326–33.

    PubMed  CAS  Google Scholar 

  20. Wattel E, Cambier N, Caulier MT, Sautière D, Bauters F, Fenaux P. Androgen therapy in myelodysplastic syndromes with thrombocytopenia: a report on 20 cases. Br J Haematol 1994, 87: 205–8.

    Article  PubMed  CAS  Google Scholar 

  21. Aydilek N, Aksakal M. Effects of testosterone on lipid peroxidation, lipid profiles and some coagulation parameters in rabbits. J Vet Med A Physiol Pathol Clin Med 2005, 52: 436–9.

    Article  PubMed  CAS  Google Scholar 

  22. Nicolaes GA, Dahlbäck B. Factor V and thrombotic disease: description of a janus-faced protein. Arterioscler Thromb Vasc Biol 2002, 22: 530–8.

    Article  PubMed  CAS  Google Scholar 

  23. Ono T, Liu N, Kasuno K, et al. Coagulation process proceeds on cultured human mesangial cells via expression of factor V. Kidney Int 2001, 60: 1009–17.

    Article  PubMed  CAS  Google Scholar 

  24. Duga S, Asselta R, Tenchini ML. Coagulation factor V. Int J Biochem Cell Biol 2004, 36: 1393–9.

    Article  PubMed  CAS  Google Scholar 

  25. Negri M, Arigliano PL, Talamini G, Carlini S, Manzato F, Bonadonna G. Levels of plasma factor VII and factor VII activated forms as a function of plasma trigylceride levels. Atherosclerosis 1993, 99: 55–61.

    Article  PubMed  CAS  Google Scholar 

  26. Hoffman CJ, Lawson WE, Miller RH, Hultin MB. Correlation of vitamin K-dependent clotting factors with cholesterol and trigylcerides in healthy young adults. Arterioscler Thromb 1994, 14: 1737–40.

    Article  PubMed  CAS  Google Scholar 

  27. Okura Y, Hayashi K, Shingu T, et al. Angiotensin-converting enzyme insertion/deletion genotype is associated with the activities of plasma coagulation factor VII and X independent of triglyceride metabolism. Coranary Artery Dis 2003, 14: 285–91.

    Google Scholar 

  28. Gasic GP, Arenas CP, Gasic TB, Gasic GJ. Coagulation factors X, Xa, and protein S as potent mitogens of cultured aortic smooth muscle cells. Proc Natl Acad Sci U S A 1992, 89: 2317–20.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Koo BH, Chung KH, Hwang KC, Kim DS. Factor Xa induces mitogenesis of coronary artery smooth muscle cell via activation of PAR- 2. FEBS Lett 2002, 523: 85–9.

    Article  PubMed  CAS  Google Scholar 

  30. Quinsey NS, Greedy AL, Bottomley SP, Whisstock JC, Pike RN. Antithrombin: in control of coagulation. Int J Biochem Cell Biol 2004, 36: 386–9.

    Article  PubMed  CAS  Google Scholar 

  31. Roemisch J, Gray E, Hoffmann JN, Wiedermann CJ. Antithrombin: a new look at the actions of a serine protease inhibitor. Blood Coagul Fibrinolysis 2002, 13: 657–70.

    Article  PubMed  CAS  Google Scholar 

  32. Bayston TA, Lane DA. Antithrombin: molecular basis of deficiency. Thromb Haemost 1997, 78: 339–43.

    PubMed  CAS  Google Scholar 

  33. Griffin JH, Fernández JA, Mosnier LO, et al. The promise of protein C. Blood Cells Mol Dis 2006, 36: 211–6.

    Article  PubMed  CAS  Google Scholar 

  34. Dahlbäck B, Villoutreix BO. The anticoagulant protein C pathway. FEBS Lett 2005, 579: 3310–6.

    Article  PubMed  CAS  Google Scholar 

  35. Folsom AR, Rosamond WD, Shahar E, et al. Prospective study of markers of hemostatic function with risk of ischemic stroke. The Atherosclerosis Risk in Communities (ARIC) Study Investigators. Circulation 1999, 100: 736–42.

    Article  PubMed  CAS  Google Scholar 

  36. Marques-Vidal P, Sie P, Cambou JP, Chap H, Perret B. Relationships of plasminogen activator inhibitor activity and lipoprotein(a) with insulin, testosterone, 17 beta-estradiol, and testosterone binding globulin in myocardial infarction patients and healthy controls. J Clin Endocrinol Metab 1995, 80: 1794–8.

    PubMed  CAS  Google Scholar 

  37. Phillips GB, Pinkernell BH, Jing TY. The association of hypotestosteronemia with coronary artery disease in men. Arterioscler Thromb 1994, 14: 701–6.

    Article  PubMed  CAS  Google Scholar 

  38. Dawson S, Hamsten A, Wiman B, Henney A, Humphries S. Genetic variation at the plasminogen activator inhibitor-1 locus is associated with altered levels of plasma plasminogen activator inhibitor-1 activity. Arterioscler Thromb 1991, 11: 183–90.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Erem MD, K.T.Ü.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erem, C., Kocak, M., Hacihasanoglu, A. et al. Blood coagulation and fibrinolysis in male patients with hypogonadotropic hypogonadism: Plasma factor V and factor X activities increase in hypogonadotropic hypogonadism. J Endocrinol Invest 31, 537–541 (2008). https://doi.org/10.1007/BF03346404

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03346404

Key-words

Navigation