Skip to main content

Advertisement

Log in

Prospective evaluation of aminopeptidase activities in plasma and peripheral organs of streptozotocin-induced diabetic rats

  • Original Articles
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

The cleavage of peptides by aminopeptidase enzyme types could be among the mechanisms related to certain disruptions on mediator and modulatory functions in diabetes mellitus. In order to examine this hypothesis, we measured representative aminopeptidase activities in tissues of peripheral organs of control and streptozotocin-diabetic rats. None of the examined aminopeptidase activities differed between diabetics and controls in plasma, ileum, stomach or lung. Soluble and membrane-associated alanyl, and membrane-associated cystyl aminopeptidase activities were higher in the kidney of diabetics. Decreased activity was observed in soluble and membrane-associated aspartyl and soluble dipeptidyl-peptidase IV, while increased activity was observed in soluble alanyl, arginyl, and cystyl aminopeptidases in the pancreas of diabetics. In the jejunum, soluble cystyl aminopeptidase increased in diabetics. Soluble arginyl and type-1-pyroglutamyl aminopeptidase and membrane-associated dipeptidyl-peptidase IV activities increased in the liver of diabetics. Membrane-associated dipeptidyl-peptidase IV and alanyl aminopeptidase activities in the spleen were higher in diabetics than in controls. Membrane-associated alanyl aminopeptidase activity also increased in the heart of diabetics. All these changes in streptozotocin-treated rats were avoided by the administration of insulin. Our comparative analysis of a diverse array of aminopeptidase activities supported the proposal that the regulation of peptide cleavage by these enzyme types is associated with the effects of strep-tozotocin-diabetes mellitus on peripheral organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frohman LA. CNS peptides and glucoregulation. Ann Rev Physiol 1983, 45: 95–107.

    Article  CAS  Google Scholar 

  2. Bernton EW, Long JB, Holaday JW. Opioids and neuropeptides: mechanisms in circulatory shock. Fed Proc 1985, 44: 290–9.

    PubMed  CAS  Google Scholar 

  3. Martin FJ, Miguez JM, Aldegunde M, Atienza G. Effect of streptozotocin-induced diabetes mellitus on serotonin measures of peripheral tissues in rats. Life Sci 1995, 56: 51–9.

    Article  PubMed  CAS  Google Scholar 

  4. Ramirez-Exposito MJ, Martinez-Martos JM, Prieto I, Alba F, Ramirez M. Angiotensinase activity in mice fed an olive oil-supplemented diet. Peptides 2001, 22: 945–52.

    Article  PubMed  CAS  Google Scholar 

  5. Bergmeyer HU, Brent E. Assay with pyruvate and NADH. In: Bergmeyer HU ed. Methods in enzymatic analysis. Vol. 2. London: Academic Press. 1972, 574–7.

    Google Scholar 

  6. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72: 248–54.

    Article  PubMed  CAS  Google Scholar 

  7. Gasparello-Clemente E, Casis L, Varona A, Gil J, Irazusta J, Silveira PF. Aminopeptidases in visceral organs during alterations in body fluid volume and osmolality. Peptides 2003, 24: 1367–72.

    Article  PubMed  CAS  Google Scholar 

  8. Serino R, Ueta Y, Tokunaga M, et al. Upregulation of hypothalamic nitric oxide synthase gene expression in streptozotocin-induced diabetic rats. Diabetologia 1998, 41: 640–8.

    Article  PubMed  CAS  Google Scholar 

  9. Valentin JP, Sechi LA, Humphreys MH. Resistance to hemocon-centration but non hypotensive action of atrial natriuretic peptide in diabetes mellitus induced by streptozocin in the rat. Arch Mal Coeur Vaiss 1994, 87: 1119–23.

    PubMed  CAS  Google Scholar 

  10. Waldegger S, Busch GL, Kaba NK, et al. Effect of cellular hydration on protein metabolism. Miner Electrolyte Metab 1997, 23: 201–5.

    PubMed  CAS  Google Scholar 

  11. Kugler P. Aminopeptidase A is angiotensinase A. II. Biochemical studies on aminopeptidase A and M in rat kidney homogenate. Histochemistry 1982, 74: 247–61.

    Article  PubMed  CAS  Google Scholar 

  12. Healy DP, Song LJ. Kidney aminopeptidase A and hypertension, part I — Spontaneously hypertensive rats. Hypertension 1999, 33: 740–5.

    Article  PubMed  CAS  Google Scholar 

  13. Song LJ, Healy DP. Kidney aminopeptidase A and hypertension, part II: effects of angiotensin II. Hypertension 1999, 33: 746–52.

    Article  PubMed  CAS  Google Scholar 

  14. Farjah M, Washington TL, Roxas BP, Geenen DL, Danziger RS. Dietary NaCl regulates renal aminopeptidase N: relevance to hypertension in the Dahl rat. Hypertension 2004, 43: 282–5.

    Article  PubMed  CAS  Google Scholar 

  15. Mizutani S, Goto K, Nomura S, et al. Possible action of human placental aminopeptidase N in feto-placental unit. Res Commun Chem Pathol Pharmacol 1993, 82: 65–80.

    PubMed  CAS  Google Scholar 

  16. Xu Y, Wellner D, Scheinberg DA. Substance P and bradykinin are natural inhibitors of CD13/aminopeptidase N. Biochem Biophys Res Commun 1995, 208: 664–74.

    Article  PubMed  CAS  Google Scholar 

  17. Mattson DL, Wu F. Control of arterial blood pressure and renal sodium excretion by nitric oxide synthase in the renal medulla. Acta Physiol Scand 2000, 168: 149–54.

    Article  PubMed  CAS  Google Scholar 

  18. Alfie ME, Sigmon DH, Pomposiello SI, Carretero OA. Effect of high salt intake in mutant mice lacking bradykinin-B2 receptors. Hypertension 1997, 29: 483–7.

    Article  PubMed  CAS  Google Scholar 

  19. Katori M, Majima M, Hayashi I. Crucial suppressive role of renal kallikrein-kinin system in development of salt-sensitive hypertension. Biol Res 1998, 31: 143–9.

    PubMed  CAS  Google Scholar 

  20. Bickel CA, Knepper MA, Verbalis JG, Ecelbarger CA. Dysregulation of renal salt and water transport proteins in diabetic Zucker rats. Kidney Int 2002, 61: 2099–110.

    Article  PubMed  CAS  Google Scholar 

  21. Riad A, Zhuo JL, Schultheiss HP, Tschope C. The role of the renal kallikrein-kinin system in diabetic nephropathy. Curr Opin Nephrol Hypertens 2007, 16: 22–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Chakir M, D’Orleans-Juste P, Plante GE. Neutral endopeptidase inhibition, a new approach in the exploration of diabetic vasculopathy in rats. Eur J Pharmacol 1995, 285: 11–8.

    Article  PubMed  CAS  Google Scholar 

  23. Ruiz-Ortega M, Esteban V, Egido J. The regulation of the inflammatory response through nuclear factor-kappab pathway by angiotensin IV extends the role of the renin angiotensin system in cardiovascular diseases. Trends Cardiovasc Med 2007, 17: 19–25.

    Article  PubMed  CAS  Google Scholar 

  24. Juillerat-Jeanneret L. Modulation of proteolytic activity in tissues following chronic inhibition of angiotensin-converting enzyme. Biochem Pharmacol 1993, 45: 1447–54.

    Article  PubMed  CAS  Google Scholar 

  25. Nagasaka T, Nomura S, Okamura M, et al. Immunohistochemical localization of placental leucine aminopeptidase/oxytocinase in normal human placental, fetal and adult tissues. Reprod Fertil Dev 1997, 9: 747–53.

    Article  PubMed  CAS  Google Scholar 

  26. Bie P. Osmoreceptors, vasopressin, and control of renal water excretion. Physiol Rev 1980, 60: 961–1048.

    PubMed  CAS  Google Scholar 

  27. Noreen F, Rossi MD, Robert W, Schrier MD. Role of arginine vasopressin in regulation of systemic arterial pressure. Annual Review of Medicine 1986, 37: 13–20.

    Article  Google Scholar 

  28. Petersson M, Alster P, Lundeberg T, Uvnas-Moberg K. Oxytocin causes a long-term decrease of blood pressure in female and male rats. Physiology and Behavior 1996, 60: 1311–5.

    Article  PubMed  CAS  Google Scholar 

  29. Verbalis JG, Mangione MP, Stricker EM. Oxytocin produces natriuresis in rats at physiological plasma concentrations. Endocrinology 1991, 128: 1317–22.

    Article  PubMed  CAS  Google Scholar 

  30. Carvalho AC, Botelho LM, Greene LJ, Santos RA. Effect of acute volume expansion associated with salt load on the profile of plasma angiotensins in rats. Immunopharmacology 1996, 33: 143–5.

    Article  PubMed  CAS  Google Scholar 

  31. Schapiro H, Dreiling DA. Neurohypophyseal regulation of the exocrine pancreas. A review. Am J Gastroenterol 1979, 71: 587–91.

    PubMed  CAS  Google Scholar 

  32. Kolesnyk IuM, Abramov AV. Hypothalamic mechanisms of neurohormone regulation of the endocrine part of the pancreas. Ukr Biokhim Zhu 1993, 65: 99–104.

    CAS  Google Scholar 

  33. Saravia FE, Gonzalez SL, Roig P, Alves V, Homo-Delarche F, De Nicola AF. Diabetes increases the expression of hypothalamic neuropeptides in a spontaneous model of type I diabetes, the nonobese diabetic (NOD) mouse. Cell Mol Neurobiol 2001, 21: 15–27.

    Article  PubMed  CAS  Google Scholar 

  34. El-Salhy M, Stenling R, Grimelius L. Peptidergic innervation and endocrine cells in the human liver. Scand J Gastroenterol 1993, 28: 809–15.

    Article  PubMed  CAS  Google Scholar 

  35. Hwang S-R, O’Neill A, Bark S, Foulon T, Hook V. Secretory vesicle aminopeptidase B related to neuropeptide processing: molecular identification and subcellular localization to enkephalin- and NPY-containing chromaffin granules. J Neurochem 2007, 100: 1340–50.

    Article  PubMed  CAS  Google Scholar 

  36. Konturek SJ, Konturek JW, Pawlik T, Brzozowski T. Brain-gut axis and its role in the control of food intake. J Physiol Pharmacol 2004, 55: 137–54.

    PubMed  CAS  Google Scholar 

  37. Wiest R, Jurzik L, Herold T, Straub RH, Scholmerich J. Role of NPY for vasoregulation in the splanchnic circulation during portal hypertension. Peptides 2007, 28: 396–404.

    Article  PubMed  CAS  Google Scholar 

  38. Drucker DJ. Glucagon-like peptides. Diabetes 1998, 47: 15–69.

    Article  Google Scholar 

  39. Grandt D, Dahms P, Schimiczek M, Eysselein VE, Reeve JR Jr, Mentlein R. Proteolytic processing by dipeptidyl aminopeptidase IV generates receptor selectivity for peptide YY (PYY). Me Klin (Munich) 1993, 88: 143–5.

    CAS  Google Scholar 

  40. Fuse Y, Polk DH, Lam RW, Reviczky AL, Fisher DA. Distribution and ontogeny of thyrotropin-releasing hormone degrading enzymes in rats. Am J Physiol 1990, 259: E787–91.

    PubMed  CAS  Google Scholar 

  41. Cummins PM, O’Connor B. Pyroglutamyl peptidase: an overview of the three known enzymatic forms. Biochim Biophys Acta 1998, 1429: 1–17.

    Article  PubMed  CAS  Google Scholar 

  42. George JK, Albers HE, Carraway RE, Ferris CF. Neurotensin levels in the hepatic-portal circulation are inversely related to the circadian feeding cycle in rats. Endocrinology 1987, 121: 7–13.

    Article  PubMed  CAS  Google Scholar 

  43. Vardarl I, Wdowinski JM, Hoevels J, et al. Plasma levels of thyrotropin-releasing-hormone in various splanchnic, renal, suprarenal, and cerebral veins. Klin Wochensch 1987, 65: 134–7.

    Article  CAS  Google Scholar 

  44. Bergman AJ, Stevens C, Zhou Y, et al. Pharmacokinetic and pharmacodynamic properties of multiple oral doses of sitagliptin, a dipeptidyl peptidase-IV inhibitor: a double-blind, randomized, placebo-controlled study in healthy male volunteers. Clin Therap 2006, 28: 55–72.

    Article  CAS  Google Scholar 

  45. Cooper ME, Bonnet F, Oldfield M, Jandeleit-Dahm K. Mechanisms of diabetic vasculopathy: an overview. Am J Hypertens 2001, 14: 475–86.

    Article  PubMed  CAS  Google Scholar 

  46. Palter SF, Mulayim N, Senturk L, Arici A. Interleukin-8 in the human fallopian tube. J Clin Endocrinol Metab 2001, 86: 2660–7.

    Article  PubMed  CAS  Google Scholar 

  47. Weber M, Uguccioni M, Baggiolini M, Clark-Lewis I, Dahinden CA. Deletion of the NH2-terminal residue converts monocyte chemotactic protein 1 from an activator of basophil mediator release to an eosinophil chemoattractant. J Exp Med 1996, 183: 681–5.

    Article  PubMed  CAS  Google Scholar 

  48. Larsen SL, Pedersen LO, Buus S, Stryhn A. T cell responses affected by aminopeptidase N (CD13)-mediated trimming of major histocompatibility complex class II-bound peptides. J Exp Med 1996, 184: 183–9.

    Article  PubMed  CAS  Google Scholar 

  49. Bhagwat SV, Petrovic N, Okamoto Y, Shapiro LH. The angiogenic regulator CD13/APN is a transcriptional target of Ras signaling pathways in endothelial morphogenesis. Blood 2003, 101: 1818–26.

    Article  PubMed  CAS  Google Scholar 

  50. Sedo A, Duke-Cohan JS, Balaziova E, Sedova LR. Dipeptidyl peptidase IV activity and/or structure homologs: contributing factors in the pathogenesis of rheumatoid arthritis? Arthritis Res Ther 2005, 7: 253–69.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Foulon T, Cadel S, Cohen P. Aminopeptidase B (EC 3.4.11.6). Int J Biochem Cell Biol 1999, 31: 747–50.

    Article  PubMed  CAS  Google Scholar 

  52. Lankas GR, Leiting B, Roy RS, et al. Dipeptidyl peptidase IV inhibition for the treatment of type 2 diabetes: potential importance of selectivity over dipeptidyl peptidases 8 and 9. Diabetes 2005, 54: 2988–94.

    Article  PubMed  CAS  Google Scholar 

  53. Maes MB, Dubois V, Brandt I, Lambeir AM, Van der Veken P, Augustyns K, Cheng JD, Chen X, Scharpe S, De Meester I. Dipeptidyl peptidase 8/9-like activity in human leukocytes. J Leukoc Biol 2007, 81: 1252–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. F. Silveira PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zambotti-Villela, L., Yamasaki, S.C., Villarroel, J.S. et al. Prospective evaluation of aminopeptidase activities in plasma and peripheral organs of streptozotocin-induced diabetic rats. J Endocrinol Invest 31, 492–498 (2008). https://doi.org/10.1007/BF03346396

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03346396

Key-words

Navigation