Skip to main content
Log in

Unmet needs among patients with Type 2 diabetes and secondary failure to oral anti-diabetic agents

  • Review Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Secondary failure is defined as a deterioration of glucose control in patients with Type 2 diabetes on oral antidiabetic drugs (OAD), mainly due to the progressive decline in β-cell function and reduction in insulin secretion. The consequent hyperglycemia is the most important determinant for the development of microvascular and macrovascular complications, so that an early recognition of this phenomenon can improve long-term outcomes. The recent lowering of target glycosylated hemoglobin (HbA1c) levels by international guidelines not only emphasises the importance of tight glycemic control, but also means that secondary failure to OAD will occur much sooner and is almost unavoidable. Accordingly, in the last years, new different therapeutic strategies were explored to improve the treatment of this condition. The aim of this review is to examine current approaches for treating patients with secondary failure, barriers to achieving and maintaining glycemic control, and recent evidence for emerging therapies which may represent a valid therapeutic option in subjects failing on oral hypoglycemic agents by acting mainly, but not only, at a β-cell level. In particular, we will focus on the co-administration of OAD plus a novel drug class known as incretin mimetics (e.g. exenatide and liraglutide), which target insulin secretion, and on thiazolidinediones, which act on insulin resistance. Only incretin-mimetics have a lowering HbA1c action, due to the improvement in β-cell function, which is coupled to significant weight loss. Even if these new options seem to improve the outcome of secondary failure, further investigation is needed to confirm positive results in the long term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pozzilli P, Di Mario U. Autoimmune diabetes not requiring insulin at diagnosis (latent autoimmune diabetes of the adult): definition, characterization, and potential prevention. Diabetes Care 2001, 124: 1460–7.

    Article  Google Scholar 

  2. Bagust A, Beale S. Deteriorating beta-cell function in type 2 diabetes: a long-term model. QJM 2003, 96: 281–8.

    Article  PubMed  CAS  Google Scholar 

  3. Maedler K, Carr RD, Bosco D, Zuellig RA, Berney T, Donath MY. Sulfonylurea induced beta-cell apoptosis in cultured human islets. J Clin Endocrinol Metab 2005, 90: 501–6.

    Article  PubMed  CAS  Google Scholar 

  4. Grundy SM, Benjamin IJ, Burke GL, et al. Diabetes and cardiovascular disease: a statement for healthcare professionals fromthe American Heart Association. Circulation 1999, 100: 1134–46.

    Article  PubMed  CAS  Google Scholar 

  5. Cavalot F, Petrelli A, Traversa M, et al. Postprandial blood glucose is a stronger predictor of cardiovascular events than fasting blood glucose in type 2 diabetes mellitus, particularly in women: lessons from the San Luigi Gonzaga Diabetes Study. J Clin Endocrinol Metab 2006, 91: 813–9.

    Article  PubMed  CAS  Google Scholar 

  6. de Vegt F, Dekker JM, Ruhé HG, et al. Hyperglycaemia is associated with all-cause and cardiovascular mortality in the Hoorn population: the Hoorn Study. Diabetologia 1999, 42: 926–31.

    Article  PubMed  Google Scholar 

  7. Donahue RP, Orchard TJ, Becker DJ, Kuller LH, Drash AL. Sex differences in the coronary heart disease risk profile: a possible role for insulin. The Beaver County Study. Am J Epidemiol 1987, 125: 650–7.

    CAS  Google Scholar 

  8. Lowe LP, Liu K, Greenland P, Metzger BE, Dyer AR, Stamler J. Diabetes, asymptomatic hyperglycemia, and 22-year mortality in black and white men. The Chicago Heart Association Detection Project in Industry Study. Diabetes Care 1997, 20: 163–9.

    Article  PubMed  CAS  Google Scholar 

  9. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998, 352: 837–53.

    Article  Google Scholar 

  10. Gerstein HC. Glycosylated hemoglobin: finally ready for prime time as a cardiovascular risk factor. Ann Intern Med 2004, 141: 475–6.

    Article  PubMed  CAS  Google Scholar 

  11. Khaw KT, Wareham N, Bingham S, Luben R, Welch A, Day N. Association of hemoglobin A1c with cardiovascular disease and mortality in adults: the European Prospective Investigation into Cancer in Norfolk. Ann Intern Med 2004, 141: 413–20.

    Article  PubMed  CAS  Google Scholar 

  12. Selvin E, Marinopoulos S, Berkenblit G, et al. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med 2004, 141: 421–31.

    Article  PubMed  CAS  Google Scholar 

  13. Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M; STOP-NIDDM Trial Research Group. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA 2003, 290: 486–94.

    Article  PubMed  CAS  Google Scholar 

  14. Hanefeld M, Cagatay M, Petrowitsch T, Neuser D, Petzinna D, Rupp M. Acarbose reduces the risk for myocardial infarction in type 2 diabetic patients: meta-analysis of seven long-term studies. Eur Heart J 2004, 25: 10–6.

    Article  PubMed  CAS  Google Scholar 

  15. Matthews DR, Cull CA, Stratton IM, Holman RR, Turner RC. UKPDS 26: Sulphonylurea failure in non-insulin-dependent diabetic patients over six years. UK Prospective Diabetes Study (UKPDS) Group. Diabet Med 1998, 15: 297–303.

    Article  PubMed  CAS  Google Scholar 

  16. American Diabetes Association. Standards of medical care in diabetes—2007. Diabetes Care 2007, 30 (Suppl 1): S4–41.

    Article  Google Scholar 

  17. American Association of Clinical Endocrinologists. The American Association of Clinical Endocrinologists medical guidelines for the management of diabetes mellitus: the AACE system of intensive diabetes self-management — 2002 update. Endocr Pract 2002, 8: 40–82.

    Google Scholar 

  18. International Diabetes Federation. Global Guideline for Type 2 Diabetes 2005. http://www.idf.org/home/index.cfm7un-ode=B7462CCB-3A4C-472C-80E4-710074D74AD3

  19. Mclntosh A, Hutchinson A, Home PD, et al. Clinical guidelines and evidence review for Type 2 diabetes: Blood glucose management. 2001 Sheffield: ScHARR, University of Sheffield.

    Google Scholar 

  20. Saydah SH, Fradkin J, Cowie CC. Poor control of risk factors for vascular disease among adults with previously diagnosed diabetes. JAMA 2004, 291: 335–42.

    Article  PubMed  CAS  Google Scholar 

  21. Korytkowski M. When oral agents fail: practical barriers to starting insulin. Int J Obes Relat Metab Dis 2002, 26 (Suppl 3): S18–24.

    Article  CAS  Google Scholar 

  22. Palmer JP, Fleming GA, Greenbaum CJ, et al. C-Peptide Is the appropriate outcome measure for Type 1 diabetes clinical trials to preserve β-Cell Function. Diabetes 2004, 53: 250–64.

    Article  PubMed  CAS  Google Scholar 

  23. Prando R, Giusti R, Ciuchi E, Giusto M, Melga PL, Cheli V. The utility of postprandial C-peptide evaluation in type 2 diabetes. Riv Eur Sci Med Farmacol 1996, 18: 95–104.

    PubMed  CAS  Google Scholar 

  24. Del Prato S. Rationale for the association of sulfonylurea and insulin. Am J Med 1991, 90: 77S–82S.

    Article  PubMed  Google Scholar 

  25. Chen YN, Chen SY, Zeng LJ, et al. Secondary sulphonylurea failure: what pathogenesis is responsible? Br J Biomed Sci 2003, 60: 9–13.

    PubMed  CAS  Google Scholar 

  26. Eurich DT, Simpson SH, Majumdar SR, Johnson JA. Secondary failure rates associated with metformin and sulfonylurea therapy for type 2 diabetes mellitus. Pharmacotherapy 2005, 25: 810–6.

    Article  PubMed  CAS  Google Scholar 

  27. Cook MN, Girman CJ, Stein PP, Alexander CM, Holman RR. Glycemic control continues to deteriorate after sulfonylureas are added to metformin among patients with type 2 diabetes. Diabetes Care 2005, 28: 995–1000.

    Article  PubMed  CAS  Google Scholar 

  28. National Clinical Guidelines for Type 2 Diabetes, NICE, Sept 2005; Global Guidelines for Type2 Diabetes, IDF 2005.

  29. Monnier L, Lapinski H, Colette C. Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetic patients: Variations with increasing levels of HbA1c. Diabetes Care 2003, 26: 881–5.

    Article  PubMed  Google Scholar 

  30. Avignon A, Radauceanu A, Monnier L. Nonfasting plasma glucose is a better marker of diabetic control than fasting plasma glucose in type 2 diabetes. Diabetes Care 1997, 20: 1822–6.

    Article  PubMed  CAS  Google Scholar 

  31. Del Prato S. In search of normoglycaemia in diabetes: controlling postprandial glucose. Int J Obes Relat Metab Disord 2002, 26 (Suppl 3): S9–17.

    Article  PubMed  Google Scholar 

  32. Riddle MC. The treat-to-target trial: randomized addition of glargine or human NPH insulin to oral therapy of type 2 diabetic patients. Diabetes Care 2003, 26: 3080–6.

    Article  PubMed  CAS  Google Scholar 

  33. Fritsche A, Schweitzer MA, Häring HU; 4001 Study Group. Glimepiride combined with morning insulin glargine, bedtime neutral protamine hagedorn insulin, or bedtime insulin glargine in patients with type 2 diabetes. A randomized, controlled trial. Ann Intern Med 2003, 138: 952–9.

    Article  PubMed  CAS  Google Scholar 

  34. Ravnik-Oblak M, Mrevlje F. Insulin versus a combination of insulin and sulfonylurea in the treatment of NIDDM patients with secondary oral failure. Diabetes Res Clin Pract 1995, 30: 27–35.

    Article  PubMed  CAS  Google Scholar 

  35. Chazan AC, Gomes MB. Gliclazide and bedtime insulin are more efficient than insulin alone for type 2 diabetic patients with sulfonylurea secondary failure. Braz J Med Biol Res 2001, 34: 49–56.

    Article  PubMed  CAS  Google Scholar 

  36. Greco AV, Caputo S, Bertoli A, et al. The beta cell function in NIDDM patients with secondary failure: a three year follow-up of combined oral hypoglycemic and insulin therapy. Horm Metab Res 1992, 24: 280–3.

    Article  PubMed  CAS  Google Scholar 

  37. Groop LC, Widén E, Ekstrand A, et al. Morning or bedtime NPH insulin combined with sulfonylurea in treatment of NIDDM Diabetes. Diabetes Care 1992, 15: 831–4.

    Article  PubMed  CAS  Google Scholar 

  38. Bastyr EJ 3rd, Johnson ME, Trautmann ME, Anderson JH Jr, Vignati L. Insulin lispro in the treatment of patients with type 2 diabetes mellitus after oral agent failure. Clin Ther 1999, 21: 1703–14.

    Article  PubMed  CAS  Google Scholar 

  39. Kokic S, Bukovic D, Radman M, et al. Lispro insulin and metformin versus other combination in the diabetes mellitus type 2 management after secondary oral antidiabetic drug failure. Coll Antropol 2003; 27: 181–7.

    PubMed  CAS  Google Scholar 

  40. Avilés-Santa L, Sinding J, Raskin P. Effects of metformin in patients with poorly controlled, insulin-treated Type 2 diabetes mellitus. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 1999, 131: 182–8.

    Article  PubMed  Google Scholar 

  41. Malone JK, Bai S, Campaigne BN, Reviriego J, Augendre-Ferrante B. Twice-daily pre-mixed insulin rather than basal insulin therapy alone results in better overall glycaemic control in patients with Type 2 diabetes. Diabet Med 2005, 22: 374–81.

    Article  PubMed  CAS  Google Scholar 

  42. Raskin P, Allen E, Hollander P et al; INITIATE Study Group. Initiating insulin therapy in type 2 diabetes: a comparison of biphasic and basal insulin analogs. Diabetes Care 2005, 28: 260–5.

    Article  PubMed  CAS  Google Scholar 

  43. Wolffenbuttel BH, Weber RF, Weeks L, van Koetsveld PM, Verschoor L. Twice daily insulin therapy in patients with type 2 diabetes and secondary failure to sulphonylureas. Diabetes Res 1990, 13: 79–84.

    PubMed  CAS  Google Scholar 

  44. Lotz N. Combination therapy with sulfonylurea plus insulin in “secondary failure” of type 2 diabetes. Ther Umsch 1990, 47: 49–54.

    PubMed  CAS  Google Scholar 

  45. Ryan EA, Imes S, Wallace C. Short-term intensive insulin therapy in newly diagnosed type 2 diabetes. Diabetes Care 2004, 27: 1028–32.

    Article  PubMed  CAS  Google Scholar 

  46. Clauson P, Karlander S, Steen L, Efendic S. Daytime glibenclamide and bedtime NPH insulin compared to intensive insulin treatment in secondary sulphonylurea failure: a 1-year follow-up. Diabet Med 1996, 13: 471–7.

    Article  PubMed  CAS  Google Scholar 

  47. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 2003, 52: 102–10.

    Article  PubMed  CAS  Google Scholar 

  48. Toft-Nielsen MB, Madsbad S, Holst JJ. Determinants of the effectiveness of glucagon-like peptide-1 in type 2 diabetes. J Clin Endocrinol Metab 2001, 86: 3853–60.

    Article  PubMed  CAS  Google Scholar 

  49. Drucker DJ. Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol Endocrinol 2003, 17: 161–71.

    Article  PubMed  CAS  Google Scholar 

  50. Xu G, Stoffers DA, Habener JF, Bonner-Weir S. Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 1999, 48: 2270–6.

    Article  PubMed  CAS  Google Scholar 

  51. Li Y, Hansotia T, Yusta B, Ris F, Halban PA, Drucker DJ. Glucagon-like peptide-1 receptor signaling modulates beta-cell apoptosis. J Biol Chem 2003, 278: 471–8.

    Article  PubMed  CAS  Google Scholar 

  52. Buteau J, El-Assaad W, Rhodes CJ, Rosenberg L, Joly E, Prentki M. Glucagon-like peptide-1 prevents beta-cell glucolipotoxicity. Diabetologia 2004, 47: 806–15.

    Article  PubMed  CAS  Google Scholar 

  53. European Medicines Agency. European Public Assessment Report (EPAR) — BYETTA. www.emea.europa.eu/hmadocs/PDFs/EPAR/byetta/H-698-en1.pdf

  54. Parkes DG, Pittner R, Jodka C, Smith P, Young A. Insulinotropic actions of exendin-4 and glucagon-like peptide-1 in vivo and in vitro. Metabolism 2001, 50: 583–9.

    Article  PubMed  CAS  Google Scholar 

  55. Gedulin B et al. Exendin-4 (AC2993) decreases glucagon secretion during hyperglycemic clamps in diabetic fatty Zucker rats. Diabetes 1999, 48 (Suppl 1): A199 (abstract).

    Google Scholar 

  56. Jodka C, Gedulin B, Young A. Exendin-4 potently regulates gastric emptying in rats. Diabetes 1998, 47 (Suppl 1): 403A (abstract).

    Google Scholar 

  57. Linnebjerg H, Park S, Kothare P, et al. Effects of Exenatide on gastring emptying and postprandial glucose in Type 2 diabetes. Diabetes 2006, 55 (Suppl 1): A28 (abstract).

    Google Scholar 

  58. Byetta USPI, April 2006 (http://pi.lilly.com/us/byetta-pi.pdf)

  59. Baron A, Poon T, Taylor K, et al. Exenatide (synthetic Exendin-4) showed marked HbA1c decline over 5 months in patients with type 2 diabetes failing oral agents in an open-label study. Abstract presented at the American Diabetes Association 63rd Scientific Sessions, New Orleans, Louisiana, June 13–17, 2003.

  60. Buse JB, Henry RR, Han J, et al; Exenatide-11 3 Clinical Study Group. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care 2004, 27: 2628–35.

    Article  PubMed  CAS  Google Scholar 

  61. DeFronzo RA, Ratner RE, Han J, Kim DD, Fineman MS, Baron AD. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated with type 2 diabetes. Diabetes Care 2005, 28: 1092–100.

    Article  PubMed  CAS  Google Scholar 

  62. Kendall DM, Riddle MC, Rosenstock J, Zhuang D, Kim DD, Fineman MS, Baron AD. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. Diabetes Care 2005, 28: 1083–91.

    Article  PubMed  CAS  Google Scholar 

  63. Heine RJ, Van Gaal LF, Johns D, Mihm MJ, Widel MH, Brodows RG; GWAA Study Group. Exenatide versus insulin glargine in patients with suboptimally controlled type 2 diabetes: a randomized trial. Ann Intern Med 2005, 143: 559–69.

    Article  PubMed  CAS  Google Scholar 

  64. Kendall D, Blonde L, Mac S et al. Improvements in Cardiovascular Risk Factors Accompanied Improved Glycemic Control and Weight Reduction in Patients With Type 2 Diabetes Treated With Exenatide for 3.5 y. 67th ADA Congress — Chicago June 22–26 2007 Abstract 0557–P.

  65. Buse J, Macconell L, Stonehouse A et al. Exenatide maintained glycemic control with associated weight reduction over three years in patients with type 2 diabetes. 67th ADA Congress — Chicago June 22–26 2007 Abstract 0283–OR.

  66. Zinman B, Hoogwerf BJ, Durán García S, et al. The effect of adding exenatide to a thiazolidinedione in suboptimally controlled type 2 diabetes: a randomized trial. Ann Intern Med 2007, 146: 477–85.

    Article  PubMed  Google Scholar 

  67. Nauck MA, Duran S, Kim D, et al. A comparison of twicedaily exenatide and biphasic insulin aspart in patients with type 2 diabetes who were suboptimally controlled with sulfonylurea and metformin: a non-inferiority study. Diabetologia 2007, 50: 259–67.

    Article  PubMed  CAS  Google Scholar 

  68. Nauck MA, Hompesch M, Filipczak R, Le TD, Zdravkovic M, Gumprecht J; NN2211-1499 Study Group. Five weeks of treatment with the GLP-1 analogue liraglutide improves glycaemic control and lowers body weight in subjects with type 2 diabetes. Exp Clin Endocrinol Diabetes 2006, 114: 417–23.

    Article  PubMed  CAS  Google Scholar 

  69. Madsbad S, Schmitz O, Ranstam J, Jakobsen G, Matthews DR; NN2211-1310 International Study Group. Improved glycemic control with no weight increase in patients with type 2 diabetes after once-daily treatment with the longacting glucagon-like peptide 1 analog liraglutide (NN2211): a 12-week, double-blind, randomized, controlled trial. Diabetes Care 2004; 27: 1335–42.

    Article  PubMed  CAS  Google Scholar 

  70. Feinglos MN, Saad MF, Pi-Sunyer FX, An B, Santiago O; Liraglutide Dose-Response Study Group. Effects of liraglutide (NN2211), a long-acting GLP-1 analogue, on glycaemic control and bodyweight in subjects with Type 2 diabetes. Diabet Med 2005, 22: 1016–23.

    Article  PubMed  CAS  Google Scholar 

  71. Ahrén B, Pacini G, Foley JE, Schweizer A. Improved mealrelated beta-cell function and insulin sensitivity by the dipeptidyl peptidase-IV inhibitor vildagliptin in metformintreated patients with type 2 diabetes over 1 year. Diabetes Care 2005, 28: 1936–40.

    Article  PubMed  Google Scholar 

  72. Rosenstock J, Brazg R, Andryuk PJ, Lu K, Stein P; Sitagliptin Study 019 Group. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin added to ongoing pioglitazone therapy in patients with type 2 diabetes: a 24-week, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Clin Ther 2006, 28: 1556–68.

    Article  PubMed  CAS  Google Scholar 

  73. Brazg R, Xu L, Dalla Man C, Cobelli C, Thomas K, Stein PP. Effect of adding sitagliptin, a dipeptidyl peptidase-4 inhibitor, to metformin on 24-h glycaemic control and betacell function in patients with type 2 diabetes. Diabetes Obes Metab 2007, 9: 186–9.

    Article  PubMed  CAS  Google Scholar 

  74. Hermansen K, Kipnes M, Luo E, Fanurik D, Khatami H, Stein P; Sitagliptin Study 035 Group. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor, sitagliptin, in patients with type 2 diabetes mellitus inadequately controlled on glimepiride alone or on glimepiride and metformin. Diabetes Obes Metab 2007, 9: 733–45.

    Article  PubMed  CAS  Google Scholar 

  75. Kelly IE, Han TS, Walsh K, Lean ME. Effects of a thiazolidinedione compound on body fat and fat distribution of patients with type 2 diabetes. Diabetes Care 1999, 22: 288–93.

    Article  PubMed  CAS  Google Scholar 

  76. Saitoh Y, Chun-Ping C, Noma K, Ueno H, Mizuta M, Nakazato M. Pioglitazone attenuates fatty acid-induced oxidative stress and apoptosis in pancreatic beta-cells. Diabetes Obes Metab 2007 Jun 26; [Epub ahead of print].

  77. Goldberg RB, Kendall DM, Deeg MA, et al; GLAI Study Investigators. A comparison of lipid and glycemic effects of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia. Diabetes Care 2005, 28: 1547–54.

    Article  PubMed  CAS  Google Scholar 

  78. Dormandy JA, Charbonnel B, Eckland DJ, et al; PROactive investigators. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 2005, 366: 1279–89.

    Article  PubMed  CAS  Google Scholar 

  79. Kahn SE, Haffner SM, Heise MA, et al; ADOPT Study Group. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 2007, 356: 1387–8.

    Article  Google Scholar 

  80. Nissen, SE, Wolski K. Effect of Rosiglitazone on the Risk of Myocardial Infarction and Death from Cardiovascular Causes. N Engl J Med 2007 356: 2457–71.

    Article  PubMed  CAS  Google Scholar 

  81. Home PD, Pocock SJ, Beck-Nielsen H et al; RECORD Study Group. Rosiglitazone evaluated for cardiovascular outcomes—an interim analysis. N Engl J Med 2007, 357: 28–38.

    Article  PubMed  CAS  Google Scholar 

  82. Nathan DM, Buse JB, Davidson MB, et al. Management of hyperglycaemia in type 2 diabetes: A consensus algorithm for the initiation and adjustment of therapy — A consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia 2006, 49: 1711–21.

    Article  PubMed  CAS  Google Scholar 

  83. DECODE Study Group. Consequences of the new diagnostic criteria for diabetes in older men and women. DECODE Study (Diabetes Epidemiology: Collaborative Analysis of Diagnostic Criteria in Europe). Diabetes Care 1999, 22: 1667–71.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Pitocco MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pitocco, D., Valle, D., Rossi, A. et al. Unmet needs among patients with Type 2 diabetes and secondary failure to oral anti-diabetic agents. J Endocrinol Invest 31, 371–379 (2008). https://doi.org/10.1007/BF03346373

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03346373

Key-words

Navigation