Skip to main content
Log in

Early signs of left ventricular dysfunction in adolescents with Type 1 diabetes mellitus: The importance of impaired circadian modulation of blood pressure and heart rate

  • Original Articles
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Diabetic cardiomyopathy is a well-defined complication of diabetes that occurs in the absence of ischemic heart disease or hypertension. Moreover impaired circadian blood pressure (BP) variation has been associated with autonomic dysfunction. The aim of our study was to evaluate diurnal BP fluctuations and autonomic function and their association with left ventricular function in adolescents with Type 1 diabetes mellitus (T1 DM). In 48 normotensive, normoalbuminuric diabetic adolescents, with a mean (±SD) age of 17.3 (±4.1) yr and a mean (±SD) diabetes duration of 8.5 (±3.3) yr, 24-h ambulatory BP was recorded. Moreover 24-h heart rate (HR) monitoring was performed. Myocardial structural parameters were studied by echocardiogram. Left ventricular end-diastolic (EDDLV) and end-systolic diameters (ESDLV) were estimated and left ventricular mass index (LVMI) was calculated using the Devereux formula. The patients were divided into 2 groups according to the absence of decrease (non-dippers) or the decrease (dippers) of nocturnal diastolic BP (DBP). The non-dippers showed, in comparison with the dippers, reduced mean 24-h HR (79.6 vs 84.0 beats/min, p=0.05) and reduced mean day-time HR (81.3 vs 86.0 beats/min, p=0.05). The nondippers also presented greater ESDLV (28.7 vs 25.9 mm, p=0.001) and EDDLV (47.8 vs 45.1 mm, p=0.040), and LVMI (90.2 vs 78.3 g/m2, p=0.044), in comparison with the dippers. During stepwise multiple regression, the most important variables affecting LVMI were mean HR (day): (b=−0.40, p=0.001), high frequency domain variable of HR variability (b=0.38, p=0.016) and glycosylated hemoglobin (b=0.67, p=0.001). In conclusion, we found that a group of normotensive diabetic adolescents with impaired nocturnal BP reduction, also had autonomic dysfunction, together with impaired left ventricular function. These findings suggest that there is a close relationship between autonomic function and left ventricular remodeling in patients with T1DM, which may be attributed to altered diurnal BP profile, autonomic neuropathy and poor glycemic control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Verdecchia P. Prognostic value of ambulatory blood pressure: current evidence and clinical implications. Hypertension 2000, 35: 844–51.

    Article  PubMed  CAS  Google Scholar 

  2. Nakano S, Fukuda M, Hotta F, et al. Reversed circadian blood pressure rhythm is associated with occurrences of both fatal and non-fatal vascular events in NIDDM subjects. Diabetes 1998, 47: 1501–6.

    Article  PubMed  CAS  Google Scholar 

  3. Jermendy G, Ferenczi J, Hernandez E, Farkas K, Nádas J. Day-night blood pressure variation in normotensive and hypertensive NIDDM patients with symptomatic autonomic neuropathy. Diab Res Clin Pract 1996, 34: 107–14.

    Article  CAS  Google Scholar 

  4. Bernardi L, Ricordi L, Lazzari P, et al. Impaired circadian modulation of sympathovagal activity in diabetes. Circulation 1992, 86: 1443–52.

    Article  PubMed  CAS  Google Scholar 

  5. Kohno I, Takusagawa M, Yin D, et al. QT dispersion in dipper- and non-dipper-type hypertension. Am J Hypertens 1998, 11: 280–5.

    Article  PubMed  CAS  Google Scholar 

  6. Spallone V, Gambardella S, Maiello MR, Barini A, Frontoni S, Menzinger G. Relationship between autonomic neuropathy, 24-h blood pressure profile and nephropathy in normotensive IDDM patients. Diabetes Care 1994, 17: 578–84.

    Article  PubMed  CAS  Google Scholar 

  7. Spallone V, Bernardi L, Maiello MR, et al. Twenty-four-hour pattern of blood pressure and spectral analysis of heart rate variability in diabetic patients with various degrees of autonomic neuropathy. Comparison to standard cardiovascular tests. Clin Sci (Lond) 1996, 91 (Suppl): 105–7.

    Google Scholar 

  8. Kahn N, Couper JJ. Diurnal variation of blood pressure in adolescents with type 1 diabetes: dippers and non-dippers. Diabetic Medicine 1996, 13: 531–5.

    Article  Google Scholar 

  9. Darcan S, Goksen D, Mir S, et al. Alterations of blood pressure in type 1 diabetic children and adolescents. Pediatr Nephrol 2006, 21: 672–6.

    Article  PubMed  Google Scholar 

  10. Taskiran M, Rasmussen V, Rasmussen B, et al. Left ventricular dysfunction in normotensive type 1 diabetic patients: the impact of autonomic neuropathy. Diabet Med 2004, 21: 524–30.

    Article  PubMed  CAS  Google Scholar 

  11. Raev DC. Which left ventricular function is impaired earlier in the evolution of diabetic cardiomyopathy? An echocardiographic study of young type I diabetic patients. Diabetes Care 1994, 17: 633–9.

    Article  PubMed  CAS  Google Scholar 

  12. Monteagudo PT, Moisés VA, Kohlmann O Jr, Ribeiro AB, Lima VC, Zanella MT. Influence of autonomic neuropathy upon left ventricular dysfunction in insulin-dependent diabetic patients. Clin Cardiol 2000, 23: 371–5.

    Article  PubMed  CAS  Google Scholar 

  13. Suys BE, Katier N, Rooman RP, et al. Female children and adolescents with type 1 diabetes have more pronounced early echocardiographic signs of diabetic cardiomyopathy. Diabetes Care 2004, 27: 1947–53.

    Article  PubMed  Google Scholar 

  14. Hausdorf G, Rieger U, Koepp P. Cardiomyopathy in childhood diabetes mellitus: incidence, time of onset and relation to metabolic control. Int J Cardiol 1988, 19: 225–36.

    Article  PubMed  CAS  Google Scholar 

  15. Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure: Part I: diagnosis, prognosis, and measurements of diastolic function. Circulation 2002, 105: 1387–93.

    Article  PubMed  Google Scholar 

  16. Spirito P, Bellone P, Harris KM, Bernabo P, Bruzzi P, Maron BJ. Magnitute of left ventricular hypertrophy and risk of sudden death in hypertrophic cardiomyopathy. N Engl J Med 2000, 342: 1778–85.

    Article  PubMed  CAS  Google Scholar 

  17. Bondar IA, Klimontov W, Koroleva EA, Zheltova LI, Chudinova OG. The diurnal blood pressure and the EchoCG parameters of the left ventricle in patients with diabetic nephropathy. Klin Med (Mosk) 2004, 82: 18–21.

    CAS  Google Scholar 

  18. Rutter MK, McComb JM, Forster J, Brady S, Marshall SM. Increased left ventricular mass index and nocturnal systolic blood pressure in patients with type 2 diabetes mellitus and microalbuminuria. Diabetic Medicine 2000, 17: 321–5.

    Article  PubMed  CAS  Google Scholar 

  19. Pecis M, Azevedo MJ, Moraes RS, Ferlin EL, Gross JL. Autonomic dysfunction and urinary albumin excretion rate are associated with an abnormal blood pressure pattern in normotensive normoalbuminuric type 1 diabetic patients. Diabetes Care 2000, 23: 989–93.

    Article  PubMed  CAS  Google Scholar 

  20. Report of the Second Task Force on Blood Pressure Control in Children—1987. Task Force on Blood Pressure Control in Children. National Heart, Lung, and Blood Institute, Bethesda, Maryland. Pediatrics 1987, 79: 1–25.

    Google Scholar 

  21. Cowan MJ. Measurement of heart rate variability. West J Nurs Res 1995, 17: 32–48.

    Article  PubMed  CAS  Google Scholar 

  22. Keehn M. Heart rate variability physician’s guide, 2nd ed. Milwaukee WI: Marquette Electronics 1992.

  23. Tanaka H, Borres M, Thulesius O, Tamai H, Ericson MO, Lindblad LE. Blood pressure and cardiovascular autonomic function in healthy children and adolescents. J Pediatr 2000, 137: 63–7.

    Article  PubMed  CAS  Google Scholar 

  24. Devereux RB, Koren MJ, de Simone G, Okin PM, ai]Kligfield P. Methods for detection of left ventricular hypertrophy: application to hypertensive heart disease. Eur Heart J 1993, 14(Suppl D): 8–15.

    Article  PubMed  Google Scholar 

  25. Sahn DJ, DeMaria A, Kisslo J, Weyman A. Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. Circulation 1978, 58: 1072–83.

    Article  PubMed  CAS  Google Scholar 

  26. Mogensen CE. Prediction of clinical diabetic nephropathy in IDDM patients. Alternatives to microalbuminuria? Diabetes 1990, 39:761–7.

    Article  PubMed  CAS  Google Scholar 

  27. Ziegler D. Diagnosis and treatment of diabetic autonomic neuropathy. Curr Diab Rep 2001, 1: 216–7.

    Article  PubMed  CAS  Google Scholar 

  28. Sato A, Tarnow L, Parving HH. Prevalence of left ventricular hypertrophy in Type I diabetic patients with diabetic nephropathy. Diabetologia 1999, 42: 76–80.

    Article  PubMed  CAS  Google Scholar 

  29. Cohen CN, Filho FM, de Fátima Gonçalves M, de Brito Gomes M. Early alterations of blood pressure in normotensive and normoalbuminuric type 1 diabetic patients. Diabetes Res Clin Pract 2001, 53: 85–90.

    Article  PubMed  CAS  Google Scholar 

  30. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996, 93:1043–65.

    Article  Google Scholar 

  31. Madácsy L, Yasar A, Tulassay T, et al. Association of relative nocturnal hypertension and autonomic neuropathy in insulin-dependent diabetic children. Acta Biomed Ateneo Parmense 1995, 66: 111–8.

    PubMed  Google Scholar 

  32. Quyyumi AA. Circadian rhythms in cardiovascular disease. Am Heart J 1990, 120: 726–33.

    Article  PubMed  CAS  Google Scholar 

  33. Simpson P. Norepinephrine-stimulated hypertrophy of cultured rat myocardial cells is an alpha 1 adrenergic response. J Clin Invest 1983, 72: 732–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Rapacciuolo A, Esposito G, Caron K, Mao L, Thomas SA, Rockman HA. Important role of endogenous norepinephrine and epinephrine in the development of in vivo pressure-overload cardiac hypertrophy. J Am Coll Cardiol 2001, 38: 876–82.

    Article  PubMed  CAS  Google Scholar 

  35. Laks MM, Morady F, Swan HJ. Myocardial hypertrophy produced by chronic infusion of subhypertensive doses of norepinephrine in the dog. Chest 1973, 64: 75–8.

    Article  PubMed  CAS  Google Scholar 

  36. Nielsen FS, Ali S, Rossing P, et al. Left ventricular hypertrophy in non-insulin-dependent diabetic patients with and without diabetic nephropathy. Diabet Med 1997, 14: 538–46.

    Article  PubMed  CAS  Google Scholar 

  37. Sen S, Bumpus FM. Collagen synthesis in development and reversal of cardiac hypertrophy in spontaneously hypertensive rats. Am J Cardiol 1979, 44: 954–8.

    Article  PubMed  CAS  Google Scholar 

  38. Mayet J, Shahi M, Hughes AD, et al. Left ventricular structure and function in previously untreated hypertensive patients: the importance of blood pressure, the nocturnal blood pressure dip and heart rate. J Cardiovasc Risk 1995, 2: 255–61.

    Article  PubMed  CAS  Google Scholar 

  39. Fröhlich E, Apstein C, Chobanian AV, et al. The heart in hypertension. N Engl J Med 1992, 327: 998–1008.

    Article  PubMed  Google Scholar 

  40. Verdecchia P, Schillaci G, Guerrieri M, et al. Circadian blood pressure changes and left ventricular hypertrophy in essential hypertension. Circulation 1990, 81: 528–36.

    Article  PubMed  CAS  Google Scholar 

  41. Messerli FH, Sundgaard-Riise K, Ventura HO, Dunn FG, Oigman W, Frolich ED. Clinical and hemodynamic determinants of left ventricular dimensions. Arch Intern Med 1984, 144: 477–81.

    Article  PubMed  CAS  Google Scholar 

  42. Lind L, Andersson PE, Andrén B, Hänni A, Lithell HO. Left ventricular hypertrophy in hypertension is associated with the insulin resistance metabolic syndrome. J Hypertens 1995, 13: 433–8.

    PubMed  CAS  Google Scholar 

  43. Holzmann M, Olsson A, Johansson J, Jensen-Urstad M. Left ventricular diastolic function is related to glucose in a middle-aged population. J Intern Med 2002, 251: 415–20.

    Article  PubMed  CAS  Google Scholar 

  44. Grandi AM, Piantanida E, Franzetti I, et al. Effect of glycemic control on left ventricular diastolic function in type 1 diabetes mellitus. Am J Cardiol 2006, 97: 71–6.

    Article  PubMed  CAS  Google Scholar 

  45. Berg TJ, Snorgaard O, Faber J, et al. Serum levels of advanced glycation end products are associated with left ventricular diastolic function in patients with type 1 diabetes. Diabetes Care 1999, 22: 1186–90.

    Article  PubMed  CAS  Google Scholar 

  46. Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med 1988, 318: 1315–21.

    Article  PubMed  CAS  Google Scholar 

  47. Karavanaki K, Kazianis G, Kakleas K, Konstantopoulos I, Karayianni C. QT interval prolongation in association with impaired circadian variation of blood pressure and heart rate in adolescents with Type 1 diabetes. Diabet Med 2007, 24: 1247–53.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Karavanaki MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karavanaki, K., Kazianis, G., Konstantopoulos, I. et al. Early signs of left ventricular dysfunction in adolescents with Type 1 diabetes mellitus: The importance of impaired circadian modulation of blood pressure and heart rate. J Endocrinol Invest 31, 289–296 (2008). https://doi.org/10.1007/BF03346360

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03346360

Key-words

Navigation