Skip to main content
Log in

Primary hyperaldosteronism is associated with derangement in the regulation of the hypothalamus-pituitary-adrenal axis in humans

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Hippocampal mineralocorticoid receptors (MR) play a major role in the control of hypothalamus-pituitary-adrenal (HPA) axis. The functional profile of HPA axis and the impact of MR blockade under chronic exposure to mineralocorticoid excess are unknown. To clarify this issue, ACTH, cortisol, and aldosterone secretions were studied in 6 patients with primary hyperaldosteronism (HA) and 8 controls (IMS) during placebo, placebo+human CRH (hCRH) (2 μg/kg iv bolus at 22:00 h), potassium canrenoate (CAN, 200 mg iv bolus at 20:00 h followed by 200 mg infused over 4 h) or CAN+hCRH. During placebo, both aldosterone and ACTH levels were higher (p<0.01) in HA than in NS, while cortisol levels were not significantly different. Both HA and NS showed significant ACTH and cortisol responses to hCRH (p<0.004), although the hormonal responses in HA were higher (p<0.02) than in NS. CAN infusion did not modify aldosterone levels in both HA and NS. Under CAN infusion, ACTH showed progressive rise in NS (p<0.05) but not in HA, while cortisol levels showed a significant (p<0.05) but less marked and delayed increase in HA compared to NS. CAN enhanced hCRH-induced ACTH and cortisol responses in NS (p<0.05), but not in HA. In conclusion, in humans primary hyperaldosteronism is associated with deranged function of the HPA axis. In fact, hyperaldosteronemic patients show basal and hCRH-stimulated HPA hyperactivity that is, at least partially, refractory to further stimulation by mineralocorticoid blockade with canrenoate. Whether this hormonal alteration can influence the clinical feature of hypertensive patients with primary hyperaldosteronism needs to be clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Orth DN. Corticotropin-releasing hormone in humans. Endocr Rev 1992, 13:164–91.

    PubMed  CAS  Google Scholar 

  2. Gaillard RC, Al-Damluji S. Stress and the pituitary-adrenal axis. Baillieres Clin Endocrinol Metab 1987, 1: 319–54.

    Article  PubMed  CAS  Google Scholar 

  3. De Kloet ER, Vreugdenhil E, Oitzl MS, Joels M. Brain corticosteroid receptor balance in health and disease. Endocr Rev 1998, 19: 269–301.

    PubMed  Google Scholar 

  4. Jacobson L, Sapolsky R. The role of hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocr Rev 1991, 12: 118–34.

    Article  PubMed  CAS  Google Scholar 

  5. Funder JW. Glucocorticoid and mineralocorticoid receptors: biology and clinical relevance. Ann Rev Med 1997, 48: 231–40.

    Article  PubMed  CAS  Google Scholar 

  6. Draper N, Stewart PM. 11beta-hydroxysteroid dehydrogenase and the pre-receptor regulation of corticosteroid hormone action. J Endocrinol 2005, 186: 251 -71.

    Article  PubMed  CAS  Google Scholar 

  7. Funder JW. Mineralocorticoid receptors: distribution and activation. Heart Fail Rev 2005, 10: 15–22.

    Article  PubMed  CAS  Google Scholar 

  8. Herman JP, Prewitt CM, Cullinan WE. Neuronal circuit regulation of the hypothalamo-pituitary-adrenocortical stress axis. Crit Rev Neurobiol 1996, 10: 371–94.

    Article  PubMed  CAS  Google Scholar 

  9. Herman JP, Watson SJ, Spencer RL. Defense of adrenocorticosteroid receptor expression in rat hippocampus: effects of stress and strain. Endocrinology 1999, 140: 3981–91.

    PubMed  CAS  Google Scholar 

  10. Swanson LW. Biochemical switching in hypothalamic circuits mediating responses to stress. Prog Brain Res 1991, 87: 181–200.

    Article  PubMed  CAS  Google Scholar 

  11. Oittzl MS, van Haarst AD, Sutanto W, De Kloet ER. Corticosterone, brain mineralcorticoid receptors (MRs) and the activity of the hypothalamic-pituitary-adrenal (HPA) axis: the Lewis rat as an example of increased central MR capacity and a hyporesponsive HPA axis. Psychoneuroendocrinology 1995, 20: 655–75.

    Article  Google Scholar 

  12. Young EA, Lopez JF, Murphy-Weinberg V, Watson SJ, Akil H. The role of mineralocorticoid receptors in hypothalamic-pituitary-adrenal axis regulation in humans. J Clin Endocrinol Metab 1998, 83: 3339–45.

    PubMed  CAS  Google Scholar 

  13. Dodt C, Kern W, Fehm HL, Born J. Antimineralocorticoid canrenoate enhances secretory activity of the hypothalamus-pituitary-adrenocortical (HPA) axis in humans. Neuroendocrinology 1993, 58: 570–4.

    Article  PubMed  CAS  Google Scholar 

  14. Deuschle M, Weber B, Colla M, Muller M, Kniest A, Heuser I. Mineralocorticoid receptor also modulates basal activity of hypothalamus-pituitary-adrenocortical system in humans. Neuroendocrinology 1998, 68: 355–60.

    Article  PubMed  CAS  Google Scholar 

  15. Arvat E, Maccagno B, Giordano R, et al. Mineralocorticoid receptor blockade by canrenoate increases both spontaneous and stimulated adrenal function in humans. J Clin Endocrinol Metab 2001, 86: 3176–81.

    PubMed  CAS  Google Scholar 

  16. Wiedemann K, Lauer C, Pollmacher T, Holsboer F. Sleep endocrine effects of antigluco- and antimineralocorticoids in healthy males. Am J Physiol 1994, 267: E109–14.

    PubMed  CAS  Google Scholar 

  17. Kaiman BA, Spencer RL. Rapid corticosteroid-dependent regulation of mineralocorticoid receptor protein expression in rat brain. Endocrinology 2002, 143: 4184–95.

    Article  CAS  Google Scholar 

  18. Young EA, Lopez JF, Murphy-Weinberg V, Watson SJ, Akil H. Mineralocorticoid receptor function in major depression. Arch Gen Psychiatry 2003, 60: 24–8.

    Article  PubMed  CAS  Google Scholar 

  19. Mancini T, Kola B, Mantero F, Arnaldi G. Functional and nonfunctional adrenocortical tumors demonstrate a high responsiveness to low-dose adrenocorticotropin. J Clin Endocrinol Metab 2003, 88: 1994–8.

    Article  PubMed  CAS  Google Scholar 

  20. Schubert B, Fassnacht M, Beuschlein F, Zenkert S, Allolio B, Reincke M. Angiotensin II type 1 receptor and ACTH receptor expression in human adrenocortical neoplasms. Clin Endocrinol (Oxf) 2001, 54: 627–32.

    Article  CAS  Google Scholar 

  21. Arnaldi G, Mancini V, Costantini C, et al. ACTH receptor mRNA in human adrenocortical tumors: overexpression in aldosteronomas. Endocr Res 1998, 24: 845–9.

    Article  PubMed  CAS  Google Scholar 

  22. Orth DN, Kovacs WJ. The adrenal cortex. In: Wilson JD, Foster DW eds., Williams textbook of endocrinology. Philadelphia: WB Saunders. 1992, 534–44.

    Google Scholar 

  23. Kater CE, Biglieri EG, Brust N, Chang B, Hirai J, Irony I. Stimulation and suppression of the mineralocorticoid hormones in normal subjects and adrenocortical disorders. Endocr Rev 1989, 10: 149–64.

    Article  PubMed  CAS  Google Scholar 

  24. Arvat E, Di Vito L, Lanfranco F, et al. Stimulatory effect of adrenocorticotropin on cortisol, aldosterone, and dehydroepiandrosterone secretion in normal humans: dose-response study. J Clin Endocrinol Metab 2000, 85: 3141–6.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Arvat MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giordano, R., Pellegrino, M., Picu, A. et al. Primary hyperaldosteronism is associated with derangement in the regulation of the hypothalamus-pituitary-adrenal axis in humans. J Endocrinol Invest 30, 558–563 (2007). https://doi.org/10.1007/BF03346349

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03346349

Key-words

Navigation