Skip to main content
Log in

Apolipoprotein E and lipoprotein lipase gene polymorphisms interaction on the atherogenic combined expression of hypertriglyceridemia and hyperapobetalipoproteinemia phenotypes

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

The combination of hypertriglyceridemia (hyperTG) and hyperapobetalipoproteinemia (hyperapoB) is associated with an increased coronary artery disease (CAD) risk. Apolipoprotein (apo) E and lipoprotein lipase (LPL) genes are involved in the catabolism of triglycerides (TG)-rich apoB-containing lipoproteins (VLDL). Several apoE and LPL gene variants affecting CAD risk, plasma TG or apoB concentrations have an allelic frequency of >5% in the general population. This study examined the combined effect of frequent apoE and LPL gene polymorphisms on the expression of hyperTG and hyperapoB. ApoE (E2, E3, and E4) and LPL (D9N, N291S, G188E, and P207L) were genotyped and fasting lipid profiles were assessed among 1,441 French-Canadian subjects. Multivariate analyses were performed to estimate the relationship between apoE and LPL gene variants and the risk of hyperTG (TG>1.7 mmol/l) and hyperapoB (apoB>0.9 g/l). Compared to apoE3 carriers, the apoE4 allele significantly increased the risk of expressing the “hyperTG/hyperapoB” phenotype [odds ratio (OR)=1.95; p=0.014]. This risk was significantly exacerbated (OR=4.69; p=0.017) by the presence of frequent deleterious LPL gene variants in this population. The apoE2 allele was negatively associated with hyperTG/hyperapoB (OR=0.49; p=0.002) in the absence of a deleterious LPL gene variant. These results suggest that epistasis is a phenomenon to consider while assessing the CAD risk associated with gene variants or the effect of frequent alleles on high-risk lipid profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cullen P. Evidence that triglycerides are an independent coronary heart disease risk factor. Am J Cardiol 2000, 86: 943–9.

    Article  PubMed  CAS  Google Scholar 

  2. Lamarche B, Moorjani S, Lupien PJ, et al. Apolipoprotein A-l and B levels and the risk of ischémic heart disease during a five-year follow-up of men in the Quebec cardiovascular study. Circulation 1996, 94: 273–8.

    Article  PubMed  CAS  Google Scholar 

  3. Walldius G, Jungner I, Holme I, Aastveit AH, Kolar W, Steiner E. High apolipoprotein B, low apolipoprotein A-l, and improvement in the prediction of fatal myocardial infarction (AMORIS study): a prospective study. Lancet 2001, 358: 2026–33.

    Article  PubMed  CAS  Google Scholar 

  4. Lamarche B, Després JP, Moorjani S, Cantin B, Dagenais GR, Lupien PJ. Prevalence of dyslipidemic phenotypes in ischémic heart disease (prospective results from the Quebec Cardiovascular Study). Am J Cardiol 1995, 75: 1189–95.

    Article  PubMed  CAS  Google Scholar 

  5. Sniderman AD. Applying apoB to the diagnosis and therapy of the atherogenic dyslipoproteinemias: a clinical diagnostic algorithm. Curr Opin Lipidol 2004, 15: 433–8.

    Article  PubMed  CAS  Google Scholar 

  6. Murthy V, Julien P, Gagné C. Molecular pathobiology of the human lipoprotein lipase gene. Pharmacol Ther 1996, 70: 101–35.

    Article  PubMed  CAS  Google Scholar 

  7. Mahley RW, Rall SC Jr. Type III hyperlipoproteinemia (dysbetalipoproteinemia): the role of apolipoprotein E in normal and abnormal lipoprotein metabolism. In: Scriver CR, Beaudet AL, Sly WS, et al, eds. The metabolic and molecular bases of inherited disease. 7th ed. New York: McGraw-Hill, Inc. 1995, 1953–80.

    Google Scholar 

  8. Salah D, Bohnet K, Gueguen R, Siest G, Visvikis S. Combined effects of lipoprotein lipase and apolipoprotein E polymorphisms on lipid and lipoprotein levels in the Stanislas cohort. J Lipid Res 1997, 38: 904–12.

    PubMed  CAS  Google Scholar 

  9. Vohl MC, Lepage P, Gaudet D, et al. Molecular scanning of the human PPARα gene: association of the L162V mutation with hyperapobetalipoproteinemia. J Lipid Res 2000, 41: 945–52.

    PubMed  CAS  Google Scholar 

  10. Gaudet D, Arsenault S, Pérusse L, et al. Glycerol as a correlate of impaired glucose tolerance: dissection of a complex system by use of a simple genetic trait. Am J Hum Genet 2000, 66: 1558–68.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Paré G, Serre D, Brisson D, et al. Genetic analysis of 103 candidate genes for coronary artery disease and associated phenotypes in a founder population reveals a new association between EDN1 and HDL cholesterol. Am J Hum Genet 2007, 80: 673–82.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Lohman T, Roche A, Martorel R. The airlie (VA) consensus conference. In: Standardization of anthropométric measurements. Champaign, IL: Human Kinetics. 1988, 39–80.

    Google Scholar 

  13. Gaudet D, Vohl MC, Perron P, et al. Relationships of abdominal obesity and hyperinsulinemia to angiographically assessed coronary artery disease in men with known mutations in the LDL receptor gene. Circulation 1998, 97: 871–7.

    Article  PubMed  CAS  Google Scholar 

  14. Gaudet D, Vohl MC, Julien P, et al. Relative contribution of low-density lipoprotein receptor and lipoprotein lipase gene mutations to angiographically assessed coronary artery disease among French Canadians. Am J Cardiol 1998, 82: 299–305.

    Article  PubMed  CAS  Google Scholar 

  15. Havel RJ, Eder HA, Bragdon JH. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest 1955, 34: 1345–54.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Gaudet D, Arsenault S, Bélanger C, et al. Procedure to protect confidentiality of familial data in community genetics and genomic research. Clin Genet 1999, 55: 259–64.

    Article  PubMed  CAS  Google Scholar 

  17. Bijvoet SM, Hayden MR. Mismatch PCR: a rapid method to screen for the Pro207Leu mutation in the lipoprotein lipase (LPL) gene. Hum Mol Genet 1992, 1: 541.

    Article  PubMed  CAS  Google Scholar 

  18. Monsalve MV, Henderson H, Roederer G, et al. A missense mutation at codon 188 of the human lipoprotein lipase gene is a frequent cause of lipoprotein lipase deficiency in persons of different ancestries. J Clin Invest 1990, 86: 728–34.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. De Bruin TW, Mailly F, van Barlingen HH, et al. Lipoprotein lipase gene mutations D9N and N291S in four pedigrees with familial combined hyperlipidaemia. Eur J Clin Invest 1996, 26: 631–9.

    Article  PubMed  Google Scholar 

  20. Ma Y, Wilson BI, Bijvoet S, et al. A missense mutation (Asp250—Asn) in exon 6 of the human lipoprotein lipase gene causes chylomicronemia in patients of different ancestries. Genomics 1992, 13: 649–53.

    Article  PubMed  CAS  Google Scholar 

  21. Hixson JE, Vernier DT. Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with Hhal. J Lipid Res 1990, 31: 545–8.

    PubMed  CAS  Google Scholar 

  22. Ma YH, Betard C, Roy M, Davignon J, Kessling AM. Identification of a second “French Canadian” LDL receptor gene deletion and development of a rapid method to detect both deletions. Clin Genet 1989, 36: 219–28.

    PubMed  CAS  Google Scholar 

  23. Leitersdorf E, Tobin EJ, Davignon J, Hobbs HH. Common low-density lipoprotein receptor mutations in the French Canadians population. J Clin Invest 1990, 85: 1014–23.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Vohl MC, Couture P, Moorjani S, et al. Rapid restriction fragment analysis for screening four point mutations of the low-density lipoprotein receptor gene in French Canadians. Hum Mutat 1995, 6: 243–6.

    Article  PubMed  CAS  Google Scholar 

  25. Couture P, Vohl MC, Gagné C, et al. Identification of three mutations in the low-density lipoprotein receptor gene causing familial hypercholesterolemia among French Canadians. Hum Mutat 1998, Supp 1: S226-31.

  26. Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 2001, 285: 2486–97.

    Article  Google Scholar 

  27. McPherson R, Frohlich J, Fodor G, et al. Canadian cardiovascular society position statement-recommendations for the diagnosis and treatment of dyslipidemia and prevention of cardiovascular disease. Can J Cardiol 2006, 22: 913–27.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Lemieux I, Pascot A, Couillard C, et al. Hypertriglyceridemic waist: A marker of the atherogenic metabolic triad (hyperinsulinemia; hyperapolipoprotein B; small, dense LDL) in men? Circulation 2000, 102: 179–84.

    Article  PubMed  CAS  Google Scholar 

  29. St-Pierre J, Lemieux I, Vohl MC, et al. Contribution of abdominal obesity and hypertriglyceridemia to impaired fasting glucose and coronary artery disease. Am J Cardiol 2002, 90: 15–8.

    Article  PubMed  CAS  Google Scholar 

  30. Woollett LA, Osono Y, Herz J, Dietschy JM. Apolipoprotein E competitively inhibits receptor-dependent low density lipoprotein uptake by the liver but has no effect on cholesterol absorption or synthesis in the mouse. Proc Natl Acad Sci U S A 1995, 92: 12500–4.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Després JP. The insulin resistance-dyslipidemic syndrome of visceral obesity: effect on patients’ risk. Obes Res 1998, 6 (Suppl 1): 8S–17S.

    Article  PubMed  Google Scholar 

  32. Austin MA, Hokanson JE, Edwards KL. Hypertriglyceridemia as a cardiovascular risk factor. Am J Cardiol 1998, 81: 7B-12B.

    Article  Google Scholar 

  33. Patel A, Barzi F, Jamrozik K, et al. Serum triglycerides as a risk factor for cardiovascular diseases in the Asia-Pacific region. Circulation 2004, 110: 2678–86.

    Article  PubMed  CAS  Google Scholar 

  34. Wilhelm MG, Cooper AD. Induction of atherosclerosis by human chylomicron remnants: a hypothesis. J Atheroscler Thromb 2003, 10: 132–9.

    Article  PubMed  Google Scholar 

  35. Yusuf S, Hawken S, Ôunpuu S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004, 364: 937–52.

    Article  PubMed  Google Scholar 

  36. Talmud PJ, Hawe E, Miller GJ, Humphries SE. Nonfasting apolipoprotein B and triglyceride levels as a useful predictor of coronary heart disease risk in middle-aged UK men. Arterioscler Thromb Vasc Biol 2002, 22: 1918–23.

    Article  PubMed  CAS  Google Scholar 

  37. Durrington PN, Hunt L, Ishola M, Kane J, Stephens WP. Serum apolipoproteins AI and B and lipoproteins in middle aged men with and without previous myocardial infarction. Br Heart J 1986, 56: 206–12.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Evans V, Kastelein JJ. Lipoprotein lipase deficiency—rare or common? Cardiovasc Drugs Ther 2002, 16: 283–7.

    Article  PubMed  CAS  Google Scholar 

  39. Davignon J, Cohn JS, Mabile L, Bernier L. Apolipoprotein E and atherosclerosis: insightfrom animal and human studies. Clin Chim Acta 1999, 286: 115–43.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Gaudet MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perron, P., Brisson, D., Santuré, M. et al. Apolipoprotein E and lipoprotein lipase gene polymorphisms interaction on the atherogenic combined expression of hypertriglyceridemia and hyperapobetalipoproteinemia phenotypes. J Endocrinol Invest 30, 551–557 (2007). https://doi.org/10.1007/BF03346348

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03346348

Key-words

Navigation