Skip to main content
Log in

Peripheral blood levels of thyroglobulin mRNA and serum thyroglobulin concentrations after radioiodine ablation of multinodular goiter with or without pre-treatment with recombinant human thyrotropin

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

We investigated the effect of therapeutic doses of radioiodine (RAI) on peripheral serum messenger thyroglobulin RNA (Tg mRNA) and serum thyroglobulin (sTg) in patients with multinodulargoiter (MNG) preceded or not by treatment with recombinant human TSH (rhTSH). Fourteen patients with large MNG (91–542 ml) received RAI (550–2960 MBq). Half of the patients received 0.45 mg of rhTSH prior to the treatment (RAI+rhTSH group) and half did not (RAI group). Patients’ blood samples were collected before and 24, 48, and 72 h; 7 and 30 days; and 6, 9, and 12 months after RAI treatment. Serum Tg was measured by immunoradiometric assay, serum anti-Tg by radioimmunoassay, and quantification of circulating Tg mRNA was performed by real-time PCR. The shrinkage of MNG volume was documented by serial computed tomography (CT) scans before, 6 and 12 months after RAI. Peak Tg mRNA and sTg were reached earlier in the RAI+rhTSH group (24 h and 48 h) than in the RAI group (7 days). Both declined after the peak and the lowest levels were observed at 12 months. The mean reduction of the thyroid volume was 19.8% (RAI group) and 30.3% (RAI+rhTSH group) at 6 months (ns) and 32.8% RAI and 52.5% (RAI+rhTSH group) at 12 months (p<0.05). After RAI treatment there was a significant and positive correlation between goiter volume and sTg only in the RAI group (r=0.7; p=0.032). Serum anti-Tg had a transitory and relatively small elevation in 3 and 2 patients, respectively, in the RAI and RAI+rhTSH groups. We concluded that after RAI ablation of MNG there is a rapid release of Tg into the serum possibly from the colloid, which is followed by an elevation of serum Tg mRNA that may be due to an increased release of follicular cells into the blood stream. Both phenomena are enhanced by the use of rhTSH before RAI treatment as a consequence of a more effective and prolonged radiation exposure of the thyroid follicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hegedus L, Bonnema SJ, Bennedbaek FN. Management of simple nodular goiter: current status and future perspectives. Endocr Rev 2003, 24: 102–32

    Article  PubMed  Google Scholar 

  2. Woodmansee WW, Haugen BR. Uses for recombinant human TSH in patients with thyroid cancer and nodular goiter. Clin Endocrinol (Oxf) 2004, 61: 163–73.

    Article  CAS  Google Scholar 

  3. Luster M, Lippi F, Jarzab B, et al. rhTSH-aided radioiodine ablation and treatment of differentiated thyroid carcinoma: a comprehensive review. Endocr Relat Cancer 2005, 12: 49–64.

    Article  PubMed  CAS  Google Scholar 

  4. Huysmans DA, Nieuwlaat W, Erdtsieck J, et al. Administration of a single low dose of recombinant human thyrotropin significantly enhances thyroid radioiodine uptake in non-toxic nodular goiter. J Clin Endocrinol and Metab 2000, 85: 3592–6.

    CAS  Google Scholar 

  5. Albino CC, Mesa CO Jr, Olandoski M, et al. Recombinant human thyrotropin as adjuvant in the treatment of multinodular goiters with radioiodine. J Clin Endocrinol Metab 2005, 90: 2775–80.

    Article  PubMed  CAS  Google Scholar 

  6. Nieuwlaat WA, Hermus AR, Sivro-Prndelj F, Corstens FH, Huysmans DA. Pretreatment with recombinant human TSH changes the regional distribution on thyroid scintigrams of multinodular goiter. J Clin Endocrinol Metab 2001, 86: 5330–6.

    Article  PubMed  CAS  Google Scholar 

  7. Nielsen VE, Bonnema SJ, Boel-Jorgensen H, Veje A, Hegedus L. Recombinant human thyrotropin markedly changes the 131I kinetics during 131I therapy of patients with nodular goiter: an evaluation by a randomized double-blinded trial. J Clin Endocrinol Metab 2005, 90: 79–83.

    Article  PubMed  CAS  Google Scholar 

  8. Silva MN, Rubio IG, Romão R, et al. Administration of a single dose of recombinant human thyrotrophin enhances the efficacy of radioiodine treatment of large compressive multinodular goiters. Clin Endocrinol (Oxf) 2004, 60: 300–8.

    Article  CAS  Google Scholar 

  9. Cohen O, Ilany J, Hoffman C, et al. Low-dose recombinant human thyrotropin-aided radioiodine treatment of large, multinodular goiters in elderly patients. Eur J Endocrinol 2006, 154: 243–52.

    Article  PubMed  CAS  Google Scholar 

  10. Nielsen VE, Bonnema SJ, Boel-Joergensen H, Grupe P, Hegedus L. Stimulation with 0.3-mg recombinant human thyrotropin prior to iodine 131 therapy to improve the size reduction of benign nontoxic nodular goiter: a prospective randomized double-blind trial. Arch Intern Med 2006, 166: 1476–82.

    Article  PubMed  CAS  Google Scholar 

  11. Nieuwlaat WA, Huysmans DA, van den Bosch HC, et al. Pretreatment with a single, low dose of recombinant human thyrotropin allows dose reduction of radioiodine therapy in patients with nodular goiter. J Clin Endocrinol Metab 2003, 88: 3121–9.

    Article  PubMed  CAS  Google Scholar 

  12. Ditkoff BA, Marvin MR, Yemul S, et al. Detection of circulating thyroid cells in peripheral blood. Surgery 1996, 120: 959–65.

    Article  PubMed  CAS  Google Scholar 

  13. Ringel MD, Ladenson PW, Levine ML. Molecular diagnosis of residual and recurrent thyroid cancer by amplification of thyroglobulin messenger ribonucleic acid in peripheral blood. J Clin Endocrinol Metab 1998, 83: 4435–42.

    PubMed  CAS  Google Scholar 

  14. Tallini G, Ghossein RA, Emanuel J, et al. Detection of thyroglobulin, thyroid peroxidase, and RET/PTC1 mRNA transcripts in the peripheral blood of patients with thyroid disease. J Clin Oncol 1998, 6: 1158–66.

    Google Scholar 

  15. Ringel MD, Balducci-Silano PL, Anderson JS, et al. Quantitative reverse transcription-polymerase chain reaction of circulating thyroglobulin messenger ribonucleic acid for monitoring patients with thyroid carcinoma. J Clin Endocrinol Metab 1999, 84: 4037–42.

    PubMed  CAS  Google Scholar 

  16. Wingo ST, Ringel MD, Anderson JS, et al. Quantitative reverse transcription-PCR measurement of thyroglobulin mRNA in peripheral blood of healthy subjects. Clin Chem 1999, 45: 785–9.

    PubMed  CAS  Google Scholar 

  17. Biscolla RP, Cerutti JM, Maciel RM. Detection of recurrent thyroid cancer by sensitive nested reverse transcription-polymerase chain reaction of thyroglobulin and sodium/iodide symporter messenger ribonucleic acid transcripts in peripheral blood. J Clin Endocrinol Metab 2000, 85: 3623–7.

    PubMed  CAS  Google Scholar 

  18. Fenton C, Jeffrey AS, Patel A, et al. Thyroglobulin messenger ribonucleic acid levels in the peripheral blood of children with benign and malignantthyroid disease. Pediatr Res 2001, 49: 429–34.

    Article  PubMed  CAS  Google Scholar 

  19. Savagner F, Rodien P, Reynier P, Rohmer V, Bigorgne JC, Malthiery Y. Analysis of Tg transcripts by real-time RT-PCR in the blood of thyroid cancer patients. J Clin Endocrinol Metab 2002, 87: 635–9.

    Article  PubMed  CAS  Google Scholar 

  20. Chinnappa P, Taguba L, Arciaga R. Detection of thyrotropin-receptor messenger ribonucleic acid (mRNA) and thyroglobulin mRNA transcripts in peripheral blood of patients with thyroid disease: sensitive and specific markers for thyroid cancer. J Clin Endocrinol Metab 2004, 89: 3705–9.

    Article  PubMed  CAS  Google Scholar 

  21. Barzon L, Boscaro M, Pacenti M, Taccaliti A, Palu G. Evaluation of circulating thyroid-specific transcripts as markers of thyroid cancer relapse. Int J Cancer 2004, 110: 914–20.

    Article  PubMed  CAS  Google Scholar 

  22. Li D, Butt A, Clarke S, Swaminathana R. Real-time quantitative PCR measurement of thyroglobulin mRNA in peripheral blood of thyroid cancer patients and healthy subjects. Ann N Y Acad Sci 2004, 1022: 147–51.

    Article  PubMed  CAS  Google Scholar 

  23. Eszlinger M, Neumann S, Otto L, Paschke R. Thyroglobulin mRNA quantification in the peripheral blood is not a reliable marker for the follow-up of patients with differentiated thyroid cancer. Eur J Endocrinol 2002, 147: 575–82.

    Article  PubMed  CAS  Google Scholar 

  24. Takano T, Miyauchi A, Yoshida H, Hasegawa Y, Kuma K, Amino N. Quantitative measurement of thyroglobulin mRNA in peripheral blood of patients after total thyroidectomy. Br J Cancer 2001, 85: 102–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Bugalho MJ, Domingues RS, Pinto AC, et al. Detection of thyroglobulin mRNA transcripts in peripheral blood of individuals with and without thyroid glands: evidence for thyroglobulin expression by blood cells. Eur J Endocrinol 2001, 145: 409–13.

    Article  PubMed  CAS  Google Scholar 

  26. Span PN, Sleegers MJ, van den Broek WJ, et al. Quantitative detection of peripheral thyroglobulin mRNA has limited clinical value in the follow-up of thyroid cancer patients. Ann Clin Biochem 2003, 40: 94–9.

    Article  PubMed  CAS  Google Scholar 

  27. Denizot A, Delfino C, Dutour-Meyer A, Fina F, Ouafik L. Evaluation of quantitative measurement of thyroglobulin mRNA in the follow-up of differentiated thyroid cancer. Thyroid 2003, 13: 867–72.

    Article  PubMed  CAS  Google Scholar 

  28. Grammatopoulos D, Elliott Y, Smith SC, et al. Measurement of thyroglobulin mRNA in peripheral blood as an adjunctive test for monitoring thyroid cancer. Mol Pathol 2003, 56: 162–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Elisei R, Vivaldi A, Agate L, et al. Low specificity of blood thyroglobulin messenger ribonucleic acid assay prevents its use in the follow-up of differentiated thyroid cancer patients. J Clin Endocrinol Metab 2004, 89: 33–9.

    Article  PubMed  CAS  Google Scholar 

  30. Kaufmann S, Schmutzler C, Schomburg L, et al. Real time RT-PCR analysis of thyroglobulin mRNA in peripheral blood in patients with congenital athyreosis and with differentiated thyroid carcinoma after stimulation with recombinant human thyrotropin. Endocr Regul 2004, 38: 41–9.

    PubMed  CAS  Google Scholar 

  31. Bojunga J, Zeuzem S. Molecular detection of thyroid cancer: an update. Clin Endocrinol (Oxf) 2004, 61: 523–30.

    Article  CAS  Google Scholar 

  32. Ringel MD. Molecular detection of thyroid cancer: differentiating “signal” and “noise” in clinical assays. J Clin Endocrinol Metab 2004, 89: 29–32.

    Article  PubMed  CAS  Google Scholar 

  33. Ramirez L, Braverman LE, White B, Emerson CH. Recombinant human thyrotropin is a potent stimulator of thyroid function in normal subjects. J Clin Endocrinol Metab 1997, 82: 2836–9.

    PubMed  CAS  Google Scholar 

  34. Torres MS, Ramirez L, Simkin PH, Braverman LE, Emerson CH. Effect of various doses of recombinant human thyrotropin on the thyroid radioactive iodine uptake and serum levels of thyroid hormones and thyroglobulin in normal subjects. J Clin Endocrinol Metab 2001, 86: 1660–4.

    Article  PubMed  CAS  Google Scholar 

  35. Nielsen VE, Bonnema SJ, Hegedüs L. The effects of recombinant human thyrotropin, in normal subjects and patients with goitre. Clin Endocrinol 2004, 61: 655–63.

    Article  CAS  Google Scholar 

  36. Nielsen VE, Bonnema SJ, Hegedüs L. Effects of 0.9 mg recombinant human thyrotropin on thyroid size and function in normal subjects: a randomized, double-blind, cross-over trial. J Clin Endocrinol Metab 2004, 89: 2242–7.

    Article  PubMed  CAS  Google Scholar 

  37. Rubio IG, Perone BH, Silva MN, Knobel M, Medeiros-Neto G. Human recombinant TSH preceding a therapeutic dose of radioiodine for multinodular goiters has no significant effect in the surge of TSH-receptor and TPO antibodies. Thyroid 2005, 15: 134–9.

    Article  PubMed  CAS  Google Scholar 

  38. Duick DS, Baskin HJ. Significance of radioiodine uptake at 72 hours versus 24 hours after pretreatment with recombinant human thyrotropin for enhancement of radioiodine therapy in patients with symptomatic nontoxic or toxic multinodular goiter. Endocr Pract 2004, 10: 253–60.

    Article  PubMed  Google Scholar 

  39. Nieuwlaat WA, Hermus AR, Ross HA, et al. Dosimetry of radioiodine therapy in patients with nodular goiter after pretreatment with a single, low dose of recombinant human thyroid-stimulating hormone. J Nucl Med 2004, 45: 626–33.

    PubMed  CAS  Google Scholar 

  40. Nielsen VE, Bonnema SJ, Hegedüs L. Transient goiter enlargement after administration of 0.3 mg recombinant human thyrotropin in patients with benign nontoxic nodular goiter: a randomized, double-blind, cross-over trial. J Clin Endocrin Metab 2006, 9: 1317–22.

    Article  CAS  Google Scholar 

  41. Robbins RJ, Voelker E, Wang W, Macapinlac HA, Larson SM. Compassionate use of recombinant human thyrotropin to facilitate radioiodine therapy: case report and reviews of literature. Endocr Pract 2000, 6: 460–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubio, I.G.S., Silva, M.N.C., Knobel, M. et al. Peripheral blood levels of thyroglobulin mRNA and serum thyroglobulin concentrations after radioiodine ablation of multinodular goiter with or without pre-treatment with recombinant human thyrotropin. J Endocrinol Invest 30, 535–540 (2007). https://doi.org/10.1007/BF03346345

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03346345

Key-words

Navigation