Skip to main content

Advertisement

Log in

Assessment of alterations in regional cerebral blood flow in patients with hypothyroidism due to Hashimoto’s thyroiditis

  • Original Articles
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Aim: The aim of this study was to assess regional cerebral blood flow (rCBF) using detailed semiquantative analysis of Tecnethium-99m hexamethylpropyleneamine (HMPAO) brain single-photon emission computered tomography (SPECT) in patients with hypothyroidism due to autoimmune thyroiditis. Patients, material and methods: Twenty patients (mean age: 42±9 yr) and 12 control subjects (mean age: 35.4±8.5 yr) were included in this study. The corticocerebellar rCBF ratios were obtained from 52 cerebral areas on 6 transaxial slices. By using control group rCBF ratios, lower reference values (RLV) (average ratio −2 SD) were calculated and the regions below RLV having an rCBF ratio were considered as abnormal decrease (hypoperfused) areas. Results: Significant reduced rCBF rates were measured for 15 (29%) cortical regions for the patient group. The areas in which significant reduced rCBF were demonstrated in the patient group were as follows: a) in the right hemisphere: superior frontal (slice 1 and 2), inferior frontal (slice 1), anterior temporal (slice 1 and 2), precentral gyrus (slice 1 and 2), postcentral gyrus (slice 1 and 2), and parietal cortex; b) in the left hemisphere: superior frontal (slice 1 and 2), inferior frontal (slice 1), caudate nucleus, and parietal cortex. The hypoperfusion was calculated in 154 (14%, 94 right and 60 left) cortical regions out of 1040 regions in the patient group. Conclusion: These findings indicate that the alteration of rCBF in patients with hypothyroidism due to Hashimoto’s thyroiditis before T4 therapy can be demonstrated with brain SPECT. Additionally, the degree of rCBF abnormalities could be determined with brain SPECT in patients with hypothyroidism due to Hashimoto’s thyroiditis with or without neurologic or psychiatric symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dugbartey AT. Neurocognitive aspects of hypothyroidism. Arch Intern Med 1998, 158: 1413–8.

    Article  PubMed  CAS  Google Scholar 

  2. Whybrow PC, Bauer M. Behavioral and psychiatric aspects of hypothyroidism. In: Braverman LE, Utiger RD. eds. Werner & Ingbar’s The Thyroid: A fundamental and clinical text, 7th ed. Philadelphia: Lippincott Williams & Wilkins. 1996, 866–70.

    Google Scholar 

  3. Dayan CM, Daniels GH. Chronic autoimmune thyroiditis. N Engl J Med 1996; 335: 99–107.

    Article  PubMed  CAS  Google Scholar 

  4. Pearce EN, Farwell AP, Braverman LE. Thyroiditis. N Engl J Med 2003, 348: 2646–55.

    Article  PubMed  Google Scholar 

  5. Nagamachi S, Jinnouchi S, Nishii R, et al. Cerebral blood flow abnormalities induced by transient hypothyroidism afterthyroidectomy—analysis by tc-99m-HMPAO and SPM96. Ann Nucl Med 2004, 18: 469–77.

    Article  PubMed  Google Scholar 

  6. Krausz Y, Freedman N, Lester H, et al. Regional cerebral blood flow in patients with mild hypothyroidism. J Nucl Med 2004, 45: 1712–5.

    PubMed  Google Scholar 

  7. Bauer M, London ED, Silverman DH, Rasgon N, Kirchheiner J, Whybrow PC. Thyroid, brain and mood modulation in affective disorder: insights from molecular research and functional brain imaging. Pharmacopsychiatry 2003, 36(Suppl 3): S215–21.

    PubMed  CAS  Google Scholar 

  8. Leigh H, Kramer SI. The psychiatric manifestations of endocrine disease. Adv Intern Med 1984, 29: 413–45.

    PubMed  CAS  Google Scholar 

  9. Constant EL, de Voider AG, Ivanoiu A, et al. Cerebral blood flow and glucose metabolism in hypothyroidism: a positron emission tomography study. J Clin Endocrinol Metab 2001, 86: 3864–70.

    Article  PubMed  CAS  Google Scholar 

  10. Smith CD, Ain KB. Brain metabolism in hypothyroidism studied with 31P magnetic-resonance spectroscopy. Lancet 1995, 345: 619–20.

    Article  PubMed  CAS  Google Scholar 

  11. Bench CJ, Friston KJ, Brown RG, Scott LC, Frackowiak RS, Dolan RJ. The anatomy of melancholia—focal abnormalities of cerebral blood flow in major depression. Psychol Med 1992, 22: 607–15.

    Article  PubMed  CAS  Google Scholar 

  12. Kumari V, Mitterschiffthaler MT, Teasdale JD, et al. Neural abnormalities during cognitive generation of affect in treatment-resistant depression. Biol Psychiatry 2003, 54: 777–91.

    Article  PubMed  Google Scholar 

  13. Larisch R, Klimke A, Vosberg H, Löffler S, Gaebel W, Müller-Gärtner HW. In vivo evidence for the involvement of dopamine-D2 receptors in striatum and anterior cingulate gyrus in major depression. Neuroimage 1997, 5: 251–60.

    Article  PubMed  CAS  Google Scholar 

  14. Schraml FV, Beason-Held LL, Fletcher DW, Brown BP. Cerebral accumulation of Tc-99m ethyl cysteinate dimer (ECD) in severe, transient hypothyroidism. J Cereb Blood Flow Metab 2006, 26: 321–29.

    Article  PubMed  CAS  Google Scholar 

  15. Post RM, DeLisi LE, Holcomb HH, Uhde TW, Cohen R, Buchsbaum MS. Glucose utilization in the temporal cortex of affectively ill patients: positron emission tomography. Biol Psychiatry 1987, 22: 545–53.

    Article  PubMed  CAS  Google Scholar 

  16. Mathew RJ, Wilson WH. Anxiety and cerebral blood flow. Am J Psychiatry 1990, 147: 838–49.

    PubMed  CAS  Google Scholar 

  17. Wu JC, Buchsbaum MS, Hershey TG, Hazlett E, Sicotte N, Johnson JC. PET in generalized anxiety disorder. Biol Psychiatry 1991, 15: 1181–99.

    Article  Google Scholar 

  18. Lucey JV, Costa DC, Blanes T, et al. Regional cerebral blood flow in obsessive-compulsive disordered patients at rest. Differential correlates with obsessive-compulsive and anxious-avoidant dimensions. Br J Psychiatry 1995, 167: 629–34.

    Article  PubMed  CAS  Google Scholar 

  19. Mendez MF, McMurtray A, Chen AK, Shapira JS, Mishkin F, Miller BL. Functional neuroimaging and presenting psychiatric features in frontotemporal dementia. J Neurol Neurosurg Psychiatry. 2006, 77: 4–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Pochon JB, Levy R, Poline JB, et al. The role of dorsolateral prefrontal cortex in the preparation of forthcoming actions: an fMRI study. Cereb Cortex 2001, 11: 260–6.

    Article  PubMed  CAS  Google Scholar 

  21. Jueptner M, Frith CD, Brooks DJ, Frackowiak RS, Passingham RE. Anatomy of motor learning. II. Subcortical structures and learning by trial and error. J Neurophysiol 1997, 77: 1325–37.

    PubMed  CAS  Google Scholar 

  22. Toni I, Krams M, Turner R, Passingham RE. The time course of changes during motor sequence learning: a whole-brain fMRI study. Neuroimage 1998, 8: 50–61.

    Article  PubMed  CAS  Google Scholar 

  23. Dagher A, Owen AM, Boecker H, Brooks DJ. Mapping the network for planning: a correlational PET activation study with the Towerof London task. Brain 1999, 122: 1973–87.

    Article  PubMed  Google Scholar 

  24. Lu EJ, Brown WJ. An electron microscopic study of the developing caudate nucleus in euthyroid and hypothyroid states. Anat Embryol (Berl) 1977, 12: 335–64.

    Article  Google Scholar 

  25. Kinuya S, Michigishi T, Tonami N, Aburano T, Tsuji S, Hashimoto T. Reversible cerebral hypoperfusion observed with Tc-99m HMPAO SPECT in reversible dementia caused by hypothyroidism. Clin Nucl Med 1999, 24: 666–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kaya MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaya, M., Cermik, T.F., Bede, D. et al. Assessment of alterations in regional cerebral blood flow in patients with hypothyroidism due to Hashimoto’s thyroiditis. J Endocrinol Invest 30, 491–496 (2007). https://doi.org/10.1007/BF03346333

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03346333

Key-words

Navigation