Advertisement

Current Status of the Toxicology of Diesel Engine Exhaust — and the ACES Project

  • Joe L. Mauderly
Review/Übersicht

Summary

A clear understanding of the health risks of DE has been elusive, because exposures of the workers and general populations studied epidemiologically have not been accurately measured. Experimental exposures of humans and animals can be measured and these have suggested potential health hazards, but results of experimental exposures have been difficult to place in a realistic human exposure context. Experimental human exposures must be of only short duration and relatively high concentrations of DE have been necessary to produce short-term effects. Short-term and long-term animal studies have been conducted and significant progressive health effects have been produced at extreme exposure concentrations, but it is difficult to translate those results into risk factors for humans with acceptable confidence. Diesel technologies have advanced markedly over the past few decades, and emissions have been reduced and altered in composition. No published epidemiological or toxicological study has used exhaust produced by recent diesel technologies. The ACES program in the United States was created to conduct animal studies of the potential health hazards of recent technology diesel exhaust. Rats and mice are exposed to different dilutions of exhaust from a heavy-duty engine meeting the 2007 on-road emission standards and operated on a variable-duty cycle. The study is underway and early results will be available in early 2011. Final results from the long-term study of the hazards of cancer and progressive non-cancer disease will be available in late 2013.

Key words

Diesel Exhaust Toxicology Review ACES Project New Technology 

Aktueller Status der toxikologischen Daten zu Dieselmotoremissionen — und das ACES Programm

Zusammenfassung

Nach wie vor gibt es kein einheitliches oder überzeugendes Verständnis zu den gesundheitlichen Risiken von Dieselmotoremissionen, da keine der epidemiologischen Untersuchungen bei beruflichen Belastungen wie auch in der Allgemeinbevölkerung exakte Expositionsmessdaten erhoben hat. Experimentelle Studien mit Menschen und Tieren in kontrollierten Expositionssituationen weisen zwar auf mögliche Gesundheitsrisiken hin, die Ergebnisse dieser Studien sind jedoch oft nur schwer auf die menschlichen Expositionsgegebenheiten übertragbar. Mit menschlichen Probanden sind nur Kurzzeitstudien durchführbar und dabei werden relativ hohe Dieselemissionskonzentrationen benötigt, um Effekte zu sehen. Kurz- und Langzeitstudien mit Tieren zeigen ebenso erst bei stark erhöhten Expositionskonzentrationen signifikante Effekte, die allerdings nur eingeschränkt mit ausreichender Sicherheit auf menschliche Bedingungen übertragbar sind.

In den letzten Jahrzehnten hat sich die Dieseltechnologie jedoch erheblich weiterentwickelt und die Emissionen wurden nicht nur quantitativ deutlich reduziert, sondern haben sich auch in der Zusammensetzung qualitativ verändert. Bislang gibt es jedoch keine epidemiologischen oder toxikologischen Studien, die sich mit solchen aktuellen Dieselmotortechnologien auseinandersetzen.

Das hier vorgestellte ACES Untersuchungsprogramm in den USA wurde entwickelt, um in Tierversuchen die möglichen Gesundheitseffekte aktueller Dieselmotorabgase zu untersuchen. Ratten und Mäuse werden gegenüber unterschiedlichen Abgas-Verdünnungsstufen aus einem Nutzfahrzeugmotor exponiert, der die 2007 Abgasnorm erfüllt und mit einem realitätsnahen Fahrzyklus auf einem Motorprüfstand betrieben wird. Die Experimente laufen derzeit und erste Ergebnisse werden bereits Anfang 2011 erwartet. Endgültige Ergebnisse aus den Langzeitstudien zu möglichen Krebsrisiken wie auch zu nichtkanzerogenen Effekten werden voraussichtlich im Lauf des Jahres 2013 vorliegen.

Schlüsselwörter

Dieselmotoremissionen Toxikologie Literaturübersicht ACES Programm Neue Technologien 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babisch W (2006). Transportation noise and cardiovascular risk: Updated review and synthesis of epidemiological studies indicate that the evidence has increased. Noise and Health 8: 1–29, available at www.noiseandhealth.org PubMedCrossRefGoogle Scholar
  2. Barath S, Mills NL, Lundbäck M, Törnqvist H, Lucking AJ, Langrish JP, Söderberg S, Boman C, Westerholm R, Londahl J, Donadson K, Mudway IS, Sandström T, Newby DE, and Blomberg A (2010). Impaired vascular function after exposure to diesel exhaust generated at urban transient running conditions. Particle Fiber Toxicol 7: 19, available at http://www.particleandfibertoxicology.com/content/7/1/19 CrossRefGoogle Scholar
  3. Boothe VL, Shendell DG (2008). Potential health effects associated with residential proximity to freeways and primary roads: Review of scientific literature, 1999–2006. J Environ Health 70: 33–41PubMedGoogle Scholar
  4. Brunekreef B, Janssen NA, de Hartog J, Harssema H, Knape M, Van Vliet P (1997). Air pollution from truck traffic and lung function in children living near motorways. Epidemiology 8: 298–303PubMedCrossRefGoogle Scholar
  5. Carlsten C, Kaufman JD, Peretz A, Trenga CA, Sheppard L, Sullivan JH (2007). Coagulation markers in healthy human subjects exposed to diesel exhaust. Thrombosis Res 120: 849–855CrossRefGoogle Scholar
  6. Carlsten C, Kaufman JD, Trenga CA, Allen J, Peretz A, Sullivan JH (2008). Thrombotic markers in metabolic syndrome subjects exposed to diesel exhaust. Inhalation Toxicology 20: 917–921PubMedCentralPubMedCrossRefGoogle Scholar
  7. Coble JB, Stewart PA, Vermeulen R, Yereb D, Stanevich R, Blair A, Silverman DT, Attfield M (2010). The diesel exhaust in miners study: II. Exposure monitoring surveys and development of exposure groups. Annals of Occupational Hygiene epub ahead of print, doi:10.1093/annhyg/meq024, p 1–15Google Scholar
  8. EPA (U.S. Environmental Protection Agency). 2002. Health Assessment Document for Diesel Engine Exhaust. EPA 600/8-90/057F. National Center for Environmental Assessment, Office of Research and Development. Washington, U.S. EPAGoogle Scholar
  9. Heinrich U, Fuhst R, Rittinghausen S, Creutzenberg O, Bellmann B, Koch W, Levsen K (1995). Chronic inhalation exposure of Wistar rats and two different strains of mice to diesel engine exhaust, carbon black, and titanium dioxide. Inhalation Toxicology 7: 533–556CrossRefGoogle Scholar
  10. Hesterberg TW, Bunn WB, McClellan RO, Hart GA, Lapin CA (2005). Carcinogenicity studies of diesel engine exhausts in laboratory animals: A review of past studies and a discussion of future research needs. Critical Review Toxicology 35: 379–411CrossRefGoogle Scholar
  11. Hesterberg TW, Long CM, Bunn WB, Sax SN, Lapin CA, Valberg PA (2009). Non-cancer health effects of diesel exhaust: a critical assessment of recent human and animal toxicological literature. Critical Review Toxicology 39: 195–227CrossRefGoogle Scholar
  12. IARC (International Agency for Research on Cancer). 1989. IARC Monographs Evaluating Carcinogenic Risks to Humans: Diesel and Gasoline Engine Exhausts and some Nitroarenes. Vol. 46, Lyon, IARCGoogle Scholar
  13. ICPS (International Programme on Chemical Safety). 1996. Environmental Health Criteria 171: Diesel fuel and Exhaust Emissions. Geneva, WHOGoogle Scholar
  14. Kotin P, Falk HL, Thomas M (1955). Aromatic hydrocarbons. III. Presence in the particulate phase of diesel-engine exhausts and the carcinogenicity of exhaust extracts. Archives Industrial Health 11: 113–120Google Scholar
  15. Li R, Ning Z, Cui J, Yu F, Sioutas C, Hsiai T (2010). Diesel exhaust particles modulate vascular endothelial cell permeability: implication of ZO-1 expression. Toxicology Letters 197: 163–168PubMedCentralPubMedCrossRefGoogle Scholar
  16. Lucking AJ, Lundbäck M, Mills NL, Faratian D, Barath SL, Pourazar J, Cassee FR, Donaldson K, Boon NA, Badimon JJ, Sandström T, Blomberg A, Newby DE (2008). Diesel exhaust inhalation increases thrombus formation in man. European Heart J 29: 3043–3051CrossRefGoogle Scholar
  17. Lundbäck M, Mills NL, Lucking A, Barath S, Donaldson K, Newby DE, Sandström T, Blomberg A (2009). Experimental exposure to diesel exhaust increases arterial stiffness in man. Particle Fibre Toxicology 6: 7–18PubMedCentralPubMedCrossRefGoogle Scholar
  18. Mauderly JL (1997). Relevance of particle-induced rat lung tumors for assessing lung carcinogenic hazard and human lung cancer risk. Environmental Health Perspectives 105(suppl. 5): 1337–1346PubMedCentralPubMedCrossRefGoogle Scholar
  19. Mauderly JL, McCunney RJ (Editors) (1996). Particle Overload in the Rat Lung and Lung Cancer: Implications for Human Risk Assessment. Taylor & Francis, Washington, DCGoogle Scholar
  20. Mauderly JL, Garshick E (2009). Chapter 17, Diesel Exhaust. In Environmental Toxicants: Human Exposures and Their Health Effects (M. Lippmann, ed.), 3rd Ed., pp. 551–632, Hoboken, WileyCrossRefGoogle Scholar
  21. Metassan S, Routledge MN, Lucking AJ, de Willige SU, Philippou H, Mills NL, Newby DE, Ariëns RAS (2010). Fibrin clot structure remains unaffected in young healthy individuals after transient exposure to diesel exhaust. Particle Fibre Toxicology 7: 17–21PubMedCentralPubMedCrossRefGoogle Scholar
  22. McDonald J D, Harrod KS, Seagrave JC, Seilkop SK, Mauderly JL (2004). Effects of low sulfur fuel and a catalyzed particle trap on the composition and toxicity of diesel emissions. Environmental Health Perspectives 112: 1307–1312PubMedCentralPubMedCrossRefGoogle Scholar
  23. Mills NL, Törnqvist H, Robinson SD, Gonzalez M, Darnley K, MacNee W, Boon NA, Donaldson K, Blomberg A, Sandström T, Newby DE (2005). Diesel exhaust inhalation causes vascular dysfunction and impaired endogenous fibrinolysis. Circulation 112: 3930–3936PubMedCrossRefGoogle Scholar
  24. Mills NL, Törnqvist H, Gonzalez MC, Vink E, Robinson SD, Söderberg S, Boon NA, Donaldson K, Sandström T, Blomberg A, Newby DE (2007). Ischemic and thrombotic effects of dilute diesel-exhaust inhalation in men with coronary heart disease. New England J Medicine 357: 1075–1082CrossRefGoogle Scholar
  25. Nikula KJ, Snipes MB, Barr EB, Griffith WC, Henderson RF, Mauderly JL (1995). Comparative pulmonary toxicities and carcinogenicities of chronically inhaled diesel exhaust and carbon black in F344 Rats. Fundamental Applied Toxicology 25: 80–94PubMedCrossRefGoogle Scholar
  26. Nikula KJ, Griffith WC, Avila KJ, Mauderly JL (1997). Lung tissue responses and site of particle retention differ between rats and cynomolgus monkeys exposed chronically to diesel exhaust and coal dust. Fundamental Applied Toxicology 37: 37–53.PubMedCrossRefGoogle Scholar
  27. Peretz A., Sullivan JH, Leotta DF, Trenga CA, Sands FN, Allen J, Carlsten C, Wilkinson CW, Kaufman JD (2008). Diesel exhaust inhalation elicits acute vasoconstriction in vivo. Environmental Health Perspectives 116: 937–942PubMedCentralPubMedCrossRefGoogle Scholar
  28. Peretz A, Kaufman JD, Trenga CA, Allen J, Carlsten C, Aulet MR, Adar SD, Sullivan JH (2008). Effects of diesel exhaust inhalation on heart rate variability in human volunteers. Environmental Res 107: 178–184CrossRefGoogle Scholar
  29. Rudell B, Blomberg A, Helleday R, Ledin MC, Lundback B, Stjernberg N, Horstedtm P, Sandstrom T (1999). Bronchoalveolar inflammation after exposure to diesel exhaust: comparison between unfiltered and particle trap filtered exhaust. Occupational Environmental Medicine 56: 527–534PubMedCentralPubMedCrossRefGoogle Scholar
  30. Shaw CA, Robertson S, Miller MR, Duffin R, Tabor CM, Donaldson K, Newby DE, Hadocke PWF (2010). Diesel particulate-exposed macrophages cause marked endothelial cell activation. American J Respiratory Cellular Molecular Biology Epub August 6 as doi:10.1165/rcmb.2010-0011OCGoogle Scholar
  31. Stewart PA, Coble JB, Vermeulen R, Schleiff P, Blair A, Lubin J, Attfield M, Silverman DT (2010). The diesel exhaust in miners study: I. Overview of the Exposure Assessment Process. Annals of Occupational Hygiene 54: 728–746PubMedCentralPubMedCrossRefGoogle Scholar
  32. Stinn W, Teredasai A, Anskeit E, Rustmeier K, Schepers G, Schnell OP, Haussmann HJ, Carchman RA, Coggins CRE, Reininghaus W (2005). Chronic nose-only inhalation study in rats, comparing room-aged sidestream cigarette smoke and diesel engine exhaust. Inhalation Toxicology 17: 549–576PubMedCrossRefGoogle Scholar
  33. Törnqvist H, Mills NL, Gonzalez M, Miller MR, Robinson SD, Megson IL, Macnee W, Donadson K, Söderberg S, Newby DE, Sandström T, Blomberg A (2007). Persistent endothelial dysfunction in humans after diesel exhaust inhalation. American J Respiratory Critical Care Medicine 176: 395–400CrossRefGoogle Scholar
  34. Valberg PA, Crouch EA (1999). Meta-analysis of rat lung tumors from lifetime inhalation of diesel exhaust. Environmental Health Perspectives 107: 693–699PubMedCentralPubMedCrossRefGoogle Scholar
  35. Vermeulen R, Coble J, Yereb D, Lubin JH, Blair A, Portengen L, Stewart PA, Attfield M, Silverman DT (2010a). The diesel exhaust in miners study: III. Interrelations between respirable elemental carbon and gaseous and particulate components of diesel exhaust derived from area sampling in underground non-metal mining facilities. Annals of Occupational Hygiene 54: 762–773PubMedCentralPubMedCrossRefGoogle Scholar
  36. Vermeulen R, Coble JB, Lubin JH, Portengen L, Blair A, Attfield MD, Silverman DT, Stewart PA (2010b). The diesel exhaust in miners study: IV. Estimating historical exposures to diesel exhaust in underground mon-metal mining facilities. Annals of Occupational Hygiene 54: 774–788PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  1. 1.Lovelace Respiratory Research InstituteAlbuquerqueUSA

Personalised recommendations