Skip to main content
Log in

Non-functioning adrenal incidentalomas are associated with elevated D-dimer levels

  • Original Articles
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Aim: Although the majority of adrenal incidentalomas (AI) are non-functioning, studies evaluating metabolic disturbances in this particular group are limited. The objective of this study is to investigate metabolic syndrome components and levels of plasma von Willebrand factor (VWF), fibrinogen, and D-dimer in subjects with non-functioning AI. Subjects and methods: Forty-five subjects without clinical and subclinical findings of hypercortisolism or other adrenal gland disorders and 37 healthy controls were enrolled. The patients and controls underwent hormonal evaluation including morning cortisol, ACTH, post-dexamethasone suppression test (DST), morning cortisol, DHEAS, and urinary free cortisol. Anthropometric and metabolic parameters and body composition were assessed and fibrinogen, D-dimer, and VWF were measured. Results: When compared with healthy controls, subjects with AI had significant elevations in several metabolic and anthropometric parameters, uric acid, post-DST cortisol, and D-dimer. When compared with body mass index-matched controls, blood pressure (p=0.004), uric acid (p=0.009), post-DST cortisol (p=0.014), and D-dimer (p=0.045) remained significantly elevated. We demonstrated weak correlations between D-dimer and other metabolic and anthropometric variables. Morning cortisol was demonstrated as an independent variable associated with homeostasis model assessment levels in subjects with AI (β=410, p=0.004). Conclusion: Individuals with clinically and hormonally inactive adrenal adenomas feature insulin resistance and a variety of metabolic disturbances. The subtle cortisol autonomy seems to be associated with insulin-resistant state. D-dimer elevation in AI group was a consequence of insulin-resistant state associated with subtle cortisol autonomy rather than a direct effect of cortisol secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Terzolo M, Pia A, Ali A, et al. Adrenal incidentaloma: a new cause of the metabolic syndrome? J Clin Endocrinol Metab 2002, 87: 998–1003.

    Article  PubMed  CAS  Google Scholar 

  2. Erbil Y, Ademoglu E, Ozbey N, et al. Evaluation of the cardiovascular risk in patients with subclinical Cushing syndrome before and after surgery. World J Surg 2006, 30: 1665–71.

    Article  PubMed  Google Scholar 

  3. Midorikawa S, Sanada H, Hashimoto S, Suzuki T, Watanabe T. The improvement of insulin resistance in patients with adrenal incidentaloma by surgical resection. Clin Endocrinol (Oxf) 2001, 54: 797–804.

    Article  CAS  Google Scholar 

  4. Rossi R, Tauchmanova L, Luciano A, et al. Subclinical Cushing’s syndrome in patients with adrenal incidentaloma: clinical and biochemical features. J Clin Endocrinol Metab 2000, 85: 1440–8.

    PubMed  CAS  Google Scholar 

  5. Ermetici F, Malavazos AE, Corbetta S, et al. Adipokine levels and cardiovascular risk in patients with adrenal incidentaloma. Metabolism 2007, 56: 686–92.

    Article  PubMed  CAS  Google Scholar 

  6. Garrapa GG, Pantanetti P, Arnaldi G, Mantero F, Faloia E. Body composition and metabolic features in women with adrenal incidentaloma or Cushing’s syndrome. J Clin Endocrinol Metab 2001, 86: 5301–6.

    PubMed  CAS  Google Scholar 

  7. Ambrosi B, Sartorio A, Pizzocaro A, et al. Evaluation of haemostatic and fibrinolytic markers in patients with Cushing’s syndrome and in patients with adrenal incidentaloma. Exp Clin Endocrinol Diabetes 2000, 108: 294–8.

    Article  PubMed  CAS  Google Scholar 

  8. Vischer UM. von Willebrand factor, endothelial dysfunction, and cardiovascular disease. J Thromb Haemost 2006, 4: 1186–93.

    Article  PubMed  CAS  Google Scholar 

  9. Khuseyinova N, Koenig W. Biomarkers of outcome from cardiovascular disease. Curr Opin Crit Care 2006, 12: 412–9.

    Article  PubMed  Google Scholar 

  10. Baldassarre D, Amato M, Pustina L, et al. Measurement of carotid artery intima-media thickness in dyslipidemic patients increases the power of traditional risk factors to predict cardiovascular events. Atherosclerosis 2007, 191: 403–8.

    Article  PubMed  CAS  Google Scholar 

  11. Clauss A. [Rapid physiological coagulation method in determination of fibrinogen.]. Acta Haematol 1957, 17: 237–46.

    Article  PubMed  CAS  Google Scholar 

  12. Walker BR. Glucocorticoids and cardiovascular disease. Eur J Endocrinol 2007, 157: 545–59.

    Article  PubMed  CAS  Google Scholar 

  13. Mantero F, Terzolo M, Arnaldi G, et al. A survey on adrenal incidentaloma in Italy. Study Group on Adrenal Tumors of the Italian Society of Endocrinology. J Clin Endocrinol Metab 2000, 85: 637–44.

    CAS  Google Scholar 

  14. Sartorio A, Conti A, S Ferrero S, et al. Evaluation of markers of bone and collagen turnover in patients with active and preclinical Cushing’s syndrome and in patients with adrenal incidentaloma. Eur J Endocrinol 1998, 138: 146–52.

    Article  PubMed  CAS  Google Scholar 

  15. Midorikawa S, Sanada H, Hashimoto S, et al. Analysis of cortisol secretion in hormonally inactive adrenocortical incidentalomas: study of in vitro steroid secretion and immunohistochemical localization of steroidogenic enzymes. Endocr J 2001, 48: 167–74.

    Article  PubMed  CAS  Google Scholar 

  16. Rizza RA, Mandarino LJ, Gerich JE. Cortisol-induced insulin resistance in man: impaired suppression of glucose production and stimulation of glucose utilization due to a postreceptor detect of insulin action. J Clin Endocrinol Metab 1982, 54: 131–8.

    Article  PubMed  CAS  Google Scholar 

  17. Stubbs M, York DA. Central glucocorticoid regulation of parasympathetic drive to pancreatic B-cells in the obese fa/fa rat. Int J Obes 1991, 15: 547–53.

    PubMed  CAS  Google Scholar 

  18. Mangos GJ, Walker BR, Kelly JJ, et al. Cortisol inhibits cholinergic vasodilation in the human forearm. Am J Hypertens 2000, 13: 1155–60.

    Article  PubMed  CAS  Google Scholar 

  19. Sudhir K, Jennings GL, Esler MD, et al. Hydrocortisone-induced hypertension in humans: pressor responsiveness and sympathetic function. Hypertension 1989, 13: 416–21.

    Article  PubMed  CAS  Google Scholar 

  20. Smith GD, Ben-Shlomo Y, Beswick A, Yarnell J, Lightman S, Elwood P. Cortisol, testosterone, and coronary heart disease: prospective evidence from the Caerphilly study. Circulation 2005, 112: 332–40.

    Article  PubMed  CAS  Google Scholar 

  21. Albiger N, Testa RM, Almoto B, et al. Patients with Cushing’s syndrome have increased intimal media thickness at different vascular levels: comparison with a population matched for similar cardiovascular risk factors. Horm Metab Res 2006, 38: 405–10.

    Article  PubMed  CAS  Google Scholar 

  22. Colao A, Pivonello R, Spiezia S, et al. Persistence of increased cardiovascular risk in patients with Cushing’s disease after five years of successful cure. J Clin Endocrinol Metab 1999, 84: 2664–72.

    Article  PubMed  CAS  Google Scholar 

  23. Tauchmanovà L, Rossi R, Biondi B, et al. Patients with subclinical Cushing’s syndrome due to adrenal adenoma have increased cardiovascular risk. J Clin Endocrinol Metab 2002, 87: 4872–8.

    Article  PubMed  CAS  Google Scholar 

  24. Stein PD, Hull RD, Patel KC, et al. D-dimer for the exclusion of acute venous thrombosis and pulmonary embolism: a systematic review. Ann Intern Med 2004, 140: 589–602.

    Article  PubMed  Google Scholar 

  25. Ridker PM, Hennekens CH, Cerskus A, Stampfer MJ. Plasma concentration of cross-linked fibrin degradation product (D-dimer) and the risk of future myocardial infarction among apparently healthy men. Circulation 1994, 90: 2236–40.

    Article  PubMed  CAS  Google Scholar 

  26. Lowe GD, Rumley A, Sweetnam PM, Yarnell JW, Rumley J. Fibrin D-dimer, markers of coagulation activation and the risk of major ischaemic heart disease in the caerphilly study. Thromb Haemost 2001, 86: 822–7.

    PubMed  CAS  Google Scholar 

  27. Danesh J, Whincup P, Walker M, et al. Fibrin D-dimer and coronary heart disease: prospective study and meta-analysis. Circulation 2001, 103: 2323–7.

    Article  PubMed  CAS  Google Scholar 

  28. Lowe GD, Rumley A, McMahon AD, et al. Interleukin-6, fibrin D-dimer, and coagulation factors VII and XIIa in prediction of coronary heart disease. Arterioscler Thromb Vasc Biol 2004, 24: 1529–34.

    Article  PubMed  CAS  Google Scholar 

  29. Pradhan AD, LaCroix AZ, Langer RD, et al. Tissue plasminogen activator antigen and D-dimer as markers for atherothrombotic risk among healthy postmenopausal women. Circulation 2004, 110: 292–300.

    Article  PubMed  CAS  Google Scholar 

  30. Wannamethee SG, Lowe GD, Shaper AG, Rumley A, Lennon L, Whincup PH. The metabolic syndrome and insulin resistance: relationship to haemostatic and inflammatory markers in older non-diabetic men. Atherosclerosis 2005, 181: 101–8.

    Article  PubMed  CAS  Google Scholar 

  31. Nieuwdorp M, Stroes ES, Meijers JC, Büller H. Hypercoagulability in the metabolic syndrome. Curr Opin Pharmacol 2005, 5: 155–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yener.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yener, S., Comlekci, A., Akinci, B. et al. Non-functioning adrenal incidentalomas are associated with elevated D-dimer levels. J Endocrinol Invest 32, 338–343 (2009). https://doi.org/10.1007/BF03345724

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03345724

Key-words

Navigation