Skip to main content
Log in

Absence of allelic imbalance involving EMSY, CAPN5, and PAK1 genes in papillary thyroid carcinoma

  • Original Articles
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Papillary thyroid cancer (PTC) accounts for 80% of all thyroid malignancies, and genetic alterations associated to its etiology remain largely unknown. Chromosomal band 11q13 seems to be one of the most frequently amplified regions in human cancer, providing several candidate genes that need detailed characterization. The aim of our study was to investigate the existence of allelic imbalance at EMSY, CAPN5, and PAK1, as candidate genes within 11q13.5-q14 region using a single nucleotide polymorphism-based analysis. We selected a panel of 9 polymorphisms that were analyzed in 41 thyroid carcinoma samples, their contralateral non-pathological tissue and 178 controls from the general population. We did not detect allelic imbalance at these loci in our series. However, we observed a difference in the EMSY-haplotype distribution among PTC patients when compared to controls (odds ratio=2.00; p=0.02). We conclude that 11q13.5-q14 is not imbalanced in PTC, but there is evidence suggesting that EMSY might be of relevance in PTC etiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Musholt T, Musholt PB, Petrich T, Oetting G, Knapp WH, Klempnauer J. Familial papillary thyroid carcinoma: genetics, criteria for diagnosis, clinical features, and surgical treatment. World J Surg 2000, 24: 1409–17.

    Article  PubMed  CAS  Google Scholar 

  2. Hundahl SA, Fleming ID, Fremgen AM, Menck HR. A National Cancer Data Base report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985–1995. Cancer 1998, 83: 2638–48.

    Article  PubMed  CAS  Google Scholar 

  3. Lesueur F, Corbex M, McKay JD, et al. Specific haplotypes of the RET proto-oncogene are over-represented in patients with sporadic papillary thyroid carcinoma. J Med Genet 2002, 39: 260–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Grieco M, Santoro M, Berlingieri MT, et al. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 1990, 60: 557–63.

    Article  PubMed  CAS  Google Scholar 

  5. Vasko V, Ferrand M, Di Cristofaro J, Carayon P, Henry JF, de Micco C. Specific pattern of RAS oncogene mutations in follicular thyroid tumors. J Clin Endocrinol Metab 2003, 88: 2745–52.

    Article  PubMed  CAS  Google Scholar 

  6. Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 2003, 63: 1454–7.

    PubMed  CAS  Google Scholar 

  7. Cohen Y, Rosenbaum E, Clark DP, et al. Mutational analysis of BRAF in fine needle aspiration biopsies of the thyroid: a potential application for the preoperative assessment of thyroid nodules. Clin Cancer Res 2004, 10: 2761–5.

    Article  PubMed  CAS  Google Scholar 

  8. Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature 1998, 396: 643–9.

    Article  PubMed  CAS  Google Scholar 

  9. Zhu Z, Gandhi M, Nikiforova MN, Fischer AH, Nikiforov YE. Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma. An unusually high prevalence of ras mutations. Am J Clin Pathol 2003, 120: 71–7.

    Article  PubMed  CAS  Google Scholar 

  10. Rodrigues-Serpa A, Catarino A, Soares J. Loss of heterozygosity in follicular and papillary thyroid carcinomas. Cancer Genet Cytogenet 2003, 141: 26–31.

    Article  PubMed  CAS  Google Scholar 

  11. Wozniak A, Wiench M, Olejniczak A, et al. Loss of heterozygosity in 73 human thyroid tumors. Neuro Endocrinol Lett 2005, 26: 521–5.

    PubMed  CAS  Google Scholar 

  12. Wreesmann VB, Ghossein RA, Patel SG, et al. Genome-wide appraisal of thyroid cancer progression. Am J Pathol 2002, 161: 1549–56.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Wreesmann VB, Sieczka EM, Socci ND, et al. Genome-wide profiling of papillary thyroid cancer identifies MUC1 as an independent prognostic marker. Cancer Res 2004, 64: 3780–9.

    Article  PubMed  CAS  Google Scholar 

  14. Akervall JA, Jin Y, Wennerberg JP, et al. Chromosomal abnormalities involving 11q13 are associated with poor prognosis in patients with squamous cell carcinoma of the head and neck. Cancer 1995, 76: 853–9.

    Article  PubMed  CAS  Google Scholar 

  15. Gaudray P, Szepetowski P, Escot C, Birnbaum D, Theillet C. DNA amplification at 11q13 in human cancer: from complexity to perplexity. Mutat Res 1992, 276: 317–28.

    Article  PubMed  CAS  Google Scholar 

  16. Dickson C, Fantl V, Gillett C, et al. Amplification of chromosome band 11q13 and a role for cyclin D1 in human breast cancer. Cancer Lett 1995, 90: 43–50.

    Article  PubMed  CAS  Google Scholar 

  17. Schuuring E. The involvement of the chromosome 11q13 region in human malignancies: cyclin D1 and EMS1 are two new candidate oncogenes-a review. Gene 1995, 159: 83–96.

    Article  PubMed  CAS  Google Scholar 

  18. Gollin SM. Chromosomal alterations in squamous cell carcinomas of the head and neck: window to the biology of disease. Head Neck 2001, 23: 238–53.

    Article  PubMed  CAS  Google Scholar 

  19. Jin Y, Höglund M, Jin C, et al. FISH characterization of head and neck carcinomas reveals that amplification of band 11q13 is associated with deletion of distal 11q. Genes Chromosomes Cancer 1998, 22: 312–20.

    Article  PubMed  CAS  Google Scholar 

  20. Livingston DM. EMSY, a BRCA-2 partner in crime. Nat Med 2004, 10: 127–8.

    Article  PubMed  CAS  Google Scholar 

  21. King MC. A novel BRCA2-binding protein and breast and ovarian tumorigenesis. N Engl J Med 2004, 350: 1252–3.

    Article  PubMed  CAS  Google Scholar 

  22. Adam L, Vadlamudi R, Kondapaka S, Chernoff J, Mendelsohn J, Kumar R. Heregulin regulates cytoskeletal reorganization and cell migration through the p21-activated kinase-1 via phosphatidylinositol-3 kinase. J Biol Chem 1998, 273: 28238–46.

    Article  PubMed  CAS  Google Scholar 

  23. Carragher NO, Fincham VJ, Riley D, Frame MC. Cleavage of focal adhesion kinase by different proteases during SRC-regulated transformation and apoptosis. Distinct roles for calpain and caspases. J Biol Chem 2001, 276: 4270–5.

    Article  PubMed  CAS  Google Scholar 

  24. Pascual MH, Royo JL, Martínez-Tello FJ, et al. Exploring allelic imbalance within paraffin-embedded tumor biopsies using pyrosequencing technology. Clin Chem Lab Med 2006, 44: 1076–81.

    Article  PubMed  CAS  Google Scholar 

  25. Matsuo K, Tang SH, Fagin JA. Allelotype of human thyroid tumors: loss of chromosome 11q13 sequences in follicular neoplasms. Mol Endocrinol 1991, 5: 1873–9.

    Article  PubMed  CAS  Google Scholar 

  26. Zhu Z, Ciampi R, Nikiforova MN, Gandhi M, Nikiforov YE. Prevalence of RET/PTC rearrangements in thyroid papillary carcinomas: effects of the detection methods and genetic heterogeneity. J Clin Endocrinol Metab 2006, 91: 3603–10.

    Article  PubMed  CAS  Google Scholar 

  27. Benusiglio PR, Lesueur F, Luccarini C, et al. Common variation in EMSY and risk of breast and ovarian cancer: a case-control study using HapMap tagging SNPs. BMC Cancer 2005, 5: 81.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Royo PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hidalgo, M., Saez, M.E., Martinez-Tello, F.J. et al. Absence of allelic imbalance involving EMSY, CAPN5, and PAK1 genes in papillary thyroid carcinoma. J Endocrinol Invest 31, 618–623 (2008). https://doi.org/10.1007/BF03345613

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03345613

Key-words

Navigation