Skip to main content

Advertisement

Log in

Oxygen delivery enhancers: Past, present, and future

  • Review Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

In endurance sport the delivery of oxygen to muscles plays a critical role. Indeed, muscle performance declines during prolonged and intense activity as a consequence of the shift from the aerobic to the anaerobic metabolism with an increase of lactate. To enhance the aerobic capacity 2 alternatives may be used: increasing either the transport or the delivery of oxygen. In this setting, blood doping is the practice of illicitly using a drug or blood product to improve athletic performance. Based on this definition, blood doping techniques may include: 1) blood transfusion (autologous or omologous); 2) erythropoiesisstimulating substances [recombinant human erythropoietin (α, β, ω), darbepoietin-α, continuous erythropoiesis receptor activator, hematide]; 3) blood substitutes (hemoglobin-based oxygen carriers, perfluorocarbon emulsions); 4) allosteric modulators of hemoglobin (RSR-13 and RSR-4); 5) gene doping (human erythropoietin gene transfection); 6) gene regulation (hypoxia-inducible transcription factors pathway). In the present overview we will briefly describe the above-mentioned techniques with the aim of underlining potential hematological alternatives to gene doping for increasing aerobic capacity in sport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schmidt-Nielsen K. Animal Physiology: adaptation and environment. 5th ed. Cambridge, UK: Cambridge University Press, 1997.

    Google Scholar 

  2. Fisher JW, Birdwell BJ. The production of an erythropoietic factor by the in situ perfused kidney. Acta Haematol 1961, 26: 224–32.

    Article  PubMed  CAS  Google Scholar 

  3. Elliott S, Lorenzini T, Chang D, Barzilay J, Delorme E. Mapping of the active site of recombinant human erythropoietin. Blood 1997, 89: 493–502.

    PubMed  CAS  Google Scholar 

  4. Misaizu T, Matsuki S, Strickland TW, Takeuchi M, Kobata A, Takasaki S. Role of antennary structure of N-linked sugar chains in renal handling of recombinant human erythropoietin. Blood 1995, 86: 4097–104.

    PubMed  CAS  Google Scholar 

  5. Wasley LC, Timony G, Murtha P, et al. The importance of N- and O-linked oligosaccharides for the biosynthesis and in vitro and in vivo biologic activities of erythropoietin. Blood 1991, 77: 2624–32.

    PubMed  CAS  Google Scholar 

  6. Maxwell PH, Ferguson DJ, Nicholls LG, et al. Sites of erythropoietin production. Kidney Int 1997, 51: 393–401.

    Article  PubMed  CAS  Google Scholar 

  7. Tan CC, Eckardt KU, Firth JD, Ratcliffe PJ. Feedback modulation of renal and hepatic erythropoietin mRNA in response to graded anemia and hypoxia. Am J Physiol 1992, 263: F474–81.

    PubMed  CAS  Google Scholar 

  8. Fandrey J, Bunn HF. In vivo and in vitro regulation of erythropoietin mRNA: measurement by competitive polymerase chain reaction. Blood 1993, 81: 617–23.

    PubMed  CAS  Google Scholar 

  9. Wide L, Bengtsson C, Birgegård G. Circadian rhythm of erythropoietin in human serum. Br J Haematol 1989, 72: 85–90.

    Article  PubMed  CAS  Google Scholar 

  10. Pasqualetti P, Casale R. No influence of aging on the circadian rhythm of erythropoietin in healthy subjects. Gerontology 1997, 43: 206–9.

    Article  PubMed  CAS  Google Scholar 

  11. Gaudard A, Varlet-Marie E, Bressolle F, Audran M. Drugs for increasing oxygen and their potential use in doping: a review. Sports Med 2003, 33: 187–212.

    Article  PubMed  Google Scholar 

  12. Maynard MA, Ohh M. Moleculartargets from VHL studies into the oxygen-sensing pathway. Curr Cancer Drug Targets 2005, 5: 345–56.

    Article  PubMed  CAS  Google Scholar 

  13. D’Andrea AD, Lodish HF, Wong GG. Expression cloning of the murine erythropoietin receptor. Cell 1989, 57: 277–85.

    Article  PubMed  Google Scholar 

  14. Wu H, Liu X, Jaenisch R, Lodish HF. Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell 1995, 83: 59–67.

    Article  PubMed  CAS  Google Scholar 

  15. Sawada K, Krantz SB, Dai C-H, et al. Purification of human burst-forming units-erythroid and demonstration of the evolution of erythropoietin receptors. J Cell Physol 1990, 142: 219–30.

    Article  CAS  Google Scholar 

  16. Witthuhn BA, Quelle FW, Silvennoinen O, et al. JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell 1993, 74: 227–36.

    Article  PubMed  CAS  Google Scholar 

  17. Raine AE. Hypertension, blood viscosity and cardiovascular morbidity in renal failure: implications of erythropoietin therapy. Lancet 1988, 1: 97–100.

    Article  PubMed  CAS  Google Scholar 

  18. Casadevall N, Nataf J, Viron B, et al. Pure red-cell aplasia and antierythrpoietin antibodies in patients treated with recombinant erythropoietin. N Engl J Med 2002, 346: 469–75.

    Article  PubMed  CAS  Google Scholar 

  19. Schellekens H. Immunologic mechanisms of EPO-associated pure red cell aplasia. Best Pract Res Clin Haematol 2005, 18: 473–80.

    Article  PubMed  CAS  Google Scholar 

  20. Bohlius J, Wilson J, Seidenfeld J, et al. Recombinant human erythropoietins and cancer patients: updated metaanalysis of 57 studies including 9353 patients. J Natl Cancer Inst 2006, 98: 708–14.

    Article  PubMed  CAS  Google Scholar 

  21. Malyszko J, Malyszko JS, Borawski J, et al. A study of platelet functions, some hemostatic and fibrinolytic parameters in relation to serotonin in hemodialyzed patients under erythropoietin therapy. Thromb Res 1995, 77: 133–43.

    Article  PubMed  CAS  Google Scholar 

  22. Zhu X, Perazella MA. Nonhematologic complications of erythropoietin therapy. Semin Dial 2006, 19: 279–84.

    Article  PubMed  Google Scholar 

  23. MacDougall IC. An overview of the efficacy and safety of novel erythropoiesis stimulating protein (NESP). Nephrol Dialysis Transplant 2001, 16: 14–21.

    Article  CAS  Google Scholar 

  24. Lasne F, de Ceaurriz JR. Recombinant erythropoietin in urine. Nature 2000, 405: 635.

    Article  PubMed  CAS  Google Scholar 

  25. Parisotto R, Ashenden MJ, Gore CJ, Sharpe K, Hopkins W, Hahn AG. The effect of common hematologic abnormalities on the ability of blood models to detect erythropoietin abuse by athletes. Haematologica 2003, 88: 931–40.

    PubMed  Google Scholar 

  26. WADA Conference on “Genetic Enhancement of Athletic Performance” New York, 18–20 March 2002.

  27. Breidbach A, Catlin DH, Green GA, Tregub I, Truong H, Gorzek J. Detection of recombinant human erythropoietin in urine by isoelectric focusing. Clin Chem 2003, 49: 901–07.

    Article  PubMed  CAS  Google Scholar 

  28. Macdougall IC. CERA (Continuous Erythropoietin Receptor Activator): a new erythropoiesis stimulating agent for the treatment of anemia. Curr Hematol Rep 2005, 4: 436–40.

    PubMed  CAS  Google Scholar 

  29. Osten P, Grinevich V, Cetin A. Viral vectors: a wide range of choices and high levels of service. Handb Exp Pharmacol 2007, 178: 177–202.

    Article  PubMed  CAS  Google Scholar 

  30. Lippi G, Franchini M, Guidi GC. Blood doping by cobalt. Should we measure cobalt in athletes? J Occup Med Toxicol 2006, 1: 18–21.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Bunn HF. New agents that stimulate erythropoiesis. Blood 2007, 109: 868–73.

    Article  PubMed  CAS  Google Scholar 

  32. Nelson M, Popp H, Sharpe K, Ashenden M. Proof of homologous blood transfusion through quantification of blood group antigens. Haematologica 2003, 88: 1284–95.

    PubMed  CAS  Google Scholar 

  33. Goebel C, Alma C, Howe C, Kazlauskas R, Trout G. Methodologies for detection of hemoglobin-based oxygen carriers. J Chromatogr Sci 2005, 43: 39–46.

    Article  PubMed  CAS  Google Scholar 

  34. Clark LC Jr, Gollan, F. Survival of mammals breathing organic liquids equilibrated with oxygen at atmospheric pressure. Science 1966, 152: 1755–6.

    Article  PubMed  CAS  Google Scholar 

  35. Keipert PE. Perfluorochemical emulsions: future alternatives to transfusion. Blood Subst Princ Meth Prod Clin Trials. 1998, 2: 127–56.

    CAS  Google Scholar 

  36. Perutz MF, Poyart C. Bezafibrate lowers oxygen affinity of haemoglobin. Lancet 1983, 2: 881–2.

    Article  PubMed  CAS  Google Scholar 

  37. Randad RS, Mahran MA, Mehanna AS, Abraham DJ. Allosteric modifiers of hemoglobin 1. Design, synthesis, testing, and structure: allosteric activity relationship of novel hemoglobin oxygen affinity decreasing agents. J Med Chem 1991, 34: 752–7.

    Article  PubMed  CAS  Google Scholar 

  38. Breidbach A, Catlin DH. RSR13, a potential athletic performance enhancement agent: detection in urine by gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 2001, 15: 2379–82.

    Article  PubMed  CAS  Google Scholar 

  39. Steensma DP. Erythropoiesis stimulating agents may not be safe in people with cancer. BMJ 2007, 334: 648–9.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Mitka M. FDA sounds alert on anemia drugs. JAMA 2007, 297: 1868–9.

    PubMed  CAS  Google Scholar 

  41. Brown WM, Maxwell P, Graham AN, et al. Erythropoietin receptor expression in non-small cell lung carcinoma: a question of antibody specificity. Stem Cells 2007, 25: 718–22.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Borrione MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borrione, P., Mastrone, A., Salvo, R.A. et al. Oxygen delivery enhancers: Past, present, and future. J Endocrinol Invest 31, 185–192 (2008). https://doi.org/10.1007/BF03345588

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03345588

Key Words

Navigation