Skip to main content

Advertisement

Log in

Euglycemic hyperinsulinemia differentially modulates circulating total and acylated-ghrelin in humans

  • Original Articles
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

An Erratum to this article was published on 01 April 2008

Abstract

Ghrelin is a powerful orexigenic gut hormone. Circulating concentrations of total ghrelin are downregulated by food intake in both acute and chronic hyperinsulinemic states. However, in blood des-acylated (des-acyl) ghrelin is the predominant form that has no orexigenic effects in humans. Circulating acyl-ghrelin has been shown to be suppressed post-prandially and by pharmacological hyperinsulinemia. However, up to now responses of circulating acyl-ghrelin to moderate hyperinsulinemic and hyperinsulinemic-hyperlipidemic clamp conditions have not been reported. Fourteen healthy subjects were investigated using two-stepped euglycemic-hyperinsulinemic clamps (40 mU insulin/m2/min; mean 148±7 min till steady state, followed by 300 min lipid/heparin infusion). Responses of total ghrelin and acyl-ghrelin were measured at timed intervals throughout the clamps. Des-acyl-ghrelin concentrations were calculated by subtraction. Total ghrelin significantly decreased vs baseline concentrations (819±92 vs 564±58 pg/ml, p<0.001), thereby confirming previous observations. Des-acyl ghrelin closely followed total ghrelin concentrations and significantly decreased vs baseline (772±92 vs 517±56 pg/ml, p<0.001). In contrast, neither euglycemic-hyperinsulinemia nor euglycemic-hyperinsulinemic-hyperlipidemia suppressed acyl-ghrelin below baseline concentrations throughout the clamps (46±3 vs 47±8 pg/ml, p=0.90). In conclusion, moderate hyperinsulinemic and hyperinsulinemic-hyperlipidemic clamp conditions differentially modulated circulating total ghrelin and acylghrelin in humans. Factors other than changes in insulin and lipid concentrations are likely to contribute to the previously reported post-prandial reduction of circulating acyl-ghrelin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wren AM, Seal LJ, Cohen MA, et al. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab 2001, 86: 5992.

    Article  PubMed  CAS  Google Scholar 

  2. Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 2001, 50: 1714–9.

    Article  PubMed  CAS  Google Scholar 

  3. Tschöp M, Wawarta R, Riepl RL, et al. Post-prandial decrease of circulating human ghrelin levels. J Endocrinol Invest 2001, 24: RC19–21.

    Article  PubMed  Google Scholar 

  4. Tschöp M, Weyer C, Tataranni PA, Devanarayan V, Ravussin E, Heiman ML. Circulating ghrelin levels are decreased in human obesity. Diabetes 2001, 50: 707–9.

    Article  PubMed  Google Scholar 

  5. Ikezaki A, Hosoda H, Ito K, et al. Fasting plasma ghrelin levels are negatively correlated with insulin resistance and PAI-1, but not with leptin, in obese children and adolescents. Diabetes 2002, 51: 3408–11.

    Article  PubMed  CAS  Google Scholar 

  6. Pöykkö SM, Kellokoski E, Hörkkö S, Kauma H, Kesäniemi YA, Ukkola O. Low plasma ghrelin is associated with insulin resistance, hypertension, and the prevalence of type 2 diabetes. Diabetes 2003, 52: 2546–53.

    Article  PubMed  Google Scholar 

  7. Kojima M, Kangawa K. Ghrelin: structure and function. Physiol Rev 2005, 85: 495–522.

    Article  PubMed  CAS  Google Scholar 

  8. Gil-Campos M, Aguilera CM, Cañete R, Gil A. Ghrelin: a hormone regulating food intake and energy homeostasis. Br J Nutr 2006, 96: 201–26.

    Article  PubMed  CAS  Google Scholar 

  9. Marzullo P, Verti B, Savia G, et al. The relationship between active ghrelin levels and human obesity involves alterations in resting energy expenditure. J Clin Endocrinol Metab 2004, 89: 936–9.

    Article  PubMed  CAS  Google Scholar 

  10. Lucidi P, Murdolo G, Di Loreto C, et al. Meal intake similarly reduces circulating concentrations of octanoyl and total ghrelin in humans. J Endocrinol Invest 2004, 27: RC12–5.

    Article  PubMed  CAS  Google Scholar 

  11. Al Awar R, Obeid O, Hwalla N, Azar S. Postprandial acylated ghrelin status following fat and protein manipulation of meals in healthy young women. Clin Sci (Lond) 2005, 109: 405–11.

    Article  CAS  Google Scholar 

  12. Katsuki A, Urakawa H, Gabazza EC, et al. Circulating levels of active ghrelin is associated with abdominal adiposity, hyperinsulinemia and insulin resistance in patients with type 2 diabetes mellitus. Eur J Endocrinol 2004, 151: 573–7.

    Article  PubMed  CAS  Google Scholar 

  13. St-Pierre DH, Karelis AD, Coderre L, et al. Association of acylated and non-acylated ghrelin with insulin sensitivity in overweight and obese postmenopausal women. J Clin Endocrinol Metab 2006, 92: 264–9.

    Article  PubMed  CAS  Google Scholar 

  14. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 1998, 15: 539–53.

    Article  PubMed  CAS  Google Scholar 

  15. Weickert MO, Spranger J, Holst JJ, et al. Wheat-fibre-induced changes of postprandial peptide YY and ghrelin responses are not associated with acute alterations of satiety. Br J Nutr 2006, 96: 795–8.

    Article  PubMed  CAS  Google Scholar 

  16. Gruendel S, Garcia AL, Otto B, et al. Carob pulp preparation rich in insoluble dietary fiber and polyphenols enhances lipid oxidation and lowers postprandial acylated ghrelin in humans. J Nutr 2006, 136: 1533–8.

    PubMed  CAS  Google Scholar 

  17. Mackelvie KJ, Meneilly GS, Elahi D, Wong AC, Barr SI, Chanoine JP. Regulation of appetite in lean and obese adolescents after exercise: role of acylated and desacyl ghrelin. J Clin Endocrinol Metab 2007, 92: 648–54.

    Article  PubMed  CAS  Google Scholar 

  18. Cummings DE, Foster-Schubert KE, Overduin J. Ghrelin and energy balance: focus on current controversies. Curr Drug Targets 2005, 6: 153–69.

    Article  PubMed  CAS  Google Scholar 

  19. Möhlig M, Spranger J, Otto B, Ristow M, Tschöp M, Pfeiffer AF. Euglycemic hyperinsulinemia, but not lipid infusion, decreases circulating ghrelin levels in humans. J Endocrinol Invest 2002, 25: RC36–8.

    Article  PubMed  Google Scholar 

  20. Saad MF, Bernaba B, Hwu CM, et al. Insulin regulates plasma ghrelin concentration. J Clin Endocrinol Metab 2002, 87: 3997–4000.

    Article  PubMed  CAS  Google Scholar 

  21. Flanagan DE, Evans ML, Monsod TP, et al. The influence of insulin on circulating ghrelin. Am J Physiol Endocrinol Metab 2003, 284: E313–6.

    PubMed  CAS  Google Scholar 

  22. Leonetti F, Iacobellis G, Ribaudo MC, et al. Acute insulin infusion decreases plasma ghrelin levels in uncomplicated obesity. Regul Pept 2004, 122: 179–83.

    Article  PubMed  CAS  Google Scholar 

  23. Schaller G, Schmidt A, Pleiner J, Woloszczuk W, Wolzt M, Luger A. Plasma ghrelin concentrations are not regulated by glucose or insulin: a double-blind, placebo-controlled crossover clamp study. Diabetes 2003, 52: 16–20.

    Article  PubMed  CAS  Google Scholar 

  24. Murdolo G, Lucidi P, Di Loreto C, et al. Insulin is required for prandial ghrelin suppression in humans. Diabetes 2003, 52: 2923–7.

    Article  PubMed  CAS  Google Scholar 

  25. Spranger J, Ristow M, Otto B, et al. Post-prandial decrease of human plasma ghrelin in the absence of insulin. J Endocrinol Invest 2003, 26: RC19–22.

    Article  PubMed  CAS  Google Scholar 

  26. Arafat AM, Perschel FH, Otto B, et al. Glucagon suppression of ghrelin secretion is exerted at hypothalamus-pituitary level. J Clin Endocrinol Metab 2006, 91: 3528–33.

    Article  PubMed  CAS  Google Scholar 

  27. Gormsen LC, Gjedsted J, Gjedde S, et al. Free fatty acids decrease circulating ghrelin concentrations in humans. Eur J Endocrinol 2006, 154: 667–73.

    Article  PubMed  CAS  Google Scholar 

  28. Ferrannini E, Barrett EJ, Bevilacqua S, DeFronzo RA. Effect of fatty acids on glucose production and utilization in man. J Clin Invest 1983, 72: 1737–47.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Tack CJ, Lenders JW, Willemsen JJ, et al. Insulin stimulates epinephrine release under euglycemic conditions in humans. Metabolism 1998, 47: 243–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. O. Weickert MD.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF03346380.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weickert, M.O., Loeffelholz, C.V., Arafat, A.M. et al. Euglycemic hyperinsulinemia differentially modulates circulating total and acylated-ghrelin in humans. J Endocrinol Invest 31, 119–124 (2008). https://doi.org/10.1007/BF03345577

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03345577

Key Words

Navigation