Skip to main content
Log in

Long-term culture in dexamethasone unmasks an abnormal phenotype in osteoblasts isolated from osteoporotic subjects

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

We have shown that osteoblastic cells derived from trabecular bone explants of osteoporotic subjects (OP cells) exhibited an altered alkaline phosphatase (ALP) response to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] compared to control (CON) cells. Our hypothesis that OP cells have other intrinsic abnormalities was investigated using our cell models representing two different stages of differentiation. OP and CON cells were cultured in the absence (-DEX) or presence (+DEX) of 10 nM dexamethasone (DEX) in 10% fetal calf serum (FCS) prior to exposure to serum-free medium containing 1 nM of PTH and/ or 17-β estradiol (E2). Both OP and CON cells responded to DEX with a two-fold increase in basal ALP activity. While E2 or PTH+E2 had no effect on OP cells, both treatments inhibited ALP activity in CON cells (p<0.05). OP and CON cells grown in DEX also expressed PTH-stimulated adenylate cyclase (AC) activities higher than those of (-DEX) cells. OP+DEX cells, however, exhibited activities which were 8-fold higher than those of CON+DEX cells (p<0.001). In OP+DEX cells, E2 stimulated basal AC activity (p<0.05) but did not affect PTH-stimulated activity. In contrast, in CON+DEX cells, E2 had no effect on basal activity but inhibited PTH-stimulated AC activity (p<0.001). Osteocalcin production was 4-fold lower in OP+DEX cells compared to OP-DEX and CON cells (p<0.05) while osteocalcin mRNA levels were significantly lower in OP+DEX and CON±DEX cells compared to OP-DEX cells (p<0.05). E2 did not affect osteocalcin protein or mRNA levels in either OP or CON cells. No differences in mRNA levels were found for estrogen receptor-α (ER-α) in OP±DEX cells whereas these levels were significantly higher in CON+DEX compared to CON-DEX cells (p<0.05). These results indicate that DEX amplified the differences between OP and CON cells and confirm the presence of intrinsic osteoblastic abnormalities in patients with osteoporosis that persist in culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raisz LG. Osteoporosis: current approaches and future prospects in diagnosis, pathogenesis, and management. J Bone Miner Metab 1999, 17: 79–89.

    Article  PubMed  CAS  Google Scholar 

  2. Lindsay R, Cosman F. Prevention of Osteoporosis. In: Favus MJ ed. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. New York: Lippincott Williams & Wilkins. 1999, 264–9.

    Google Scholar 

  3. Raisz LG. Pathogenesis of postmenopausal osteoporosis. Rev Endocr Metab Disord 2001, 2: 5–12.

    Article  PubMed  CAS  Google Scholar 

  4. Vanderschueren D, Boonen S, Bouillon R. Osteoporosis and osteoporotic fractures in men: a clinical perspective. Baillieres Best Pract Res Clin Endocrinol Metab 2000, 14: 299–315.

    Article  PubMed  CAS  Google Scholar 

  5. Arlot M, Edouard C, Meunier PJ, Neer RM, Reeve J. Impaired osteoblast function in osteoporosis: comparison between calcium balance and dynamic histomorphometry. Br Med J 1984, 289: 517–20.

    Article  CAS  Google Scholar 

  6. Darby AJ, Meunier PJ. Mean wall thickness and formation periods of trabecular bone packets in idiopathic osteoporosis. Calcif Tiss Int 1981, 33: 199–204.

    Article  CAS  Google Scholar 

  7. Roholl PJ, Blauw E, Zurcher C, Dormans JA, Theuns HM. Evidence for a diminished maturation of preosteoblasts into osteoblasts during aging in rats: an ultrastructural analysis. J Bone Miner Res 1994, 9: 355–66.

    Article  PubMed  CAS  Google Scholar 

  8. Heshmati HM, Khosla S. Idiopathic osteoporosis: a heterogeneous entity. Ann Med Interne. 1998, 149: 77–81.

    CAS  Google Scholar 

  9. Wong MM, Rao LG, Ly H, et al. In vitro study of osteob-lastic cells from patients with idiopathic osteoporosis and comparison with cells from nonosteoporotic controls. Oste-oporos Int 1994, 4: 21–31.

    Article  CAS  Google Scholar 

  10. Duda RJ, Kumar R, Nelson KI, et al. 1,25-dihydroxyvitamin D stimulation test for osteoblast function in normal and os-teoporotic women. J Clin Invest 1987, 79: 1249–53.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Wong M-M, Rao LG, Ly H, et al. Long-term effects of physiologic concentrations of dexamethasone on human bone-derived cells. J Bone Min Res 1990, 5: 803–13.

    Article  CAS  Google Scholar 

  12. Rao LG, Kung Sutherland MS, Muzaffar SA, Wylie JN, McBroom RJ, Murray TM. Positive interaction between 17 beta-estradiol and parathyroid hormone in normal human osteoblasts cultured long term in the presence of dexam-ethasone. Osteoporos Int 1996, 6: 111–9.

    Article  PubMed  CAS  Google Scholar 

  13. Rao LG, Liu LJ, Rawlins MR, et al. The biological activities of 1alpha,25-dihydroxyvitamin D3 and its synthetic analog 1alpha,25-dihydroxy-16-ene-vitamin D3 in normal human osteoblastic cells and human osteosarcoma SaOS-2 cells are modulated by 17beta estradiol and dependent on stage of differentiation. Biol Pharm Bull 2001, 24: 242–8.

    Article  PubMed  CAS  Google Scholar 

  14. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987, 162: 156–9.

    Article  PubMed  CAS  Google Scholar 

  15. Weiss MJ, Henthorn PS, Lafferty MA, Slaughter C, Raducha M, Harris H. Isolation and characterization of a cDNA encoding a human liver/bone/kidney-type alkaline phosphatase. Proc Natl Acad Sci USA 1986, 83: 7182–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Green S, Walter P, Kumar V, et al. Human oestrogen receptor cDNA: sequence, expression and homology to v-erb A. Nature 1986, 30: 134–9.

    Article  Google Scholar 

  17. Schipani E, Karga H, Karaplis A, et al. Identical complimentary deoxyribonucleic acids encode a human renal and bone parathyroid hormone (PTH)/PTH-related peptide receptor. Endocrinology 1993, 132: 2157–65.

    PubMed  CAS  Google Scholar 

  18. Sandberg M, Autio-Harmainen H, Vuorio E. Localization of the expression of types I, II and IV collagen, TGF-β1 and c-fos genes in developing human calvarial bones. Dev Biol 1988, 130: 324–34.

    Article  PubMed  CAS  Google Scholar 

  19. Celeste AJ, Rosen V, Buecker JL, Kriz R, Wang EA, Wozney JM. Isolation of the human gene for bone GLA protein utilizing mouse and rat cDNA clones. EMBO J 1986, 5: 1885–90.

    PubMed Central  PubMed  CAS  Google Scholar 

  20. Lowry OH. Micromethods for the assay of enzyme II. Specific procedures. Alkaline phosphatase. Methods Enzymol 1955, 4: 371–2.

    Google Scholar 

  21. Shimizu H, Daley JW, Creveling CE. A radioisotopic method for the formation of adenosine 3′5′-cyclic monophosphate in incubated slices of brain. J Neurochem 1969, 16: 1609–19.

    Article  PubMed  CAS  Google Scholar 

  22. Salomon Y. Adenylate cyclase assay. Adv Cyclic Nucleotide Res 1979, 10: 35–55.

    PubMed  CAS  Google Scholar 

  23. Bradford MM. A rapid and sensitive method for the quantita-tion of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72: 245–54.

    Article  Google Scholar 

  24. Sutherland MS, Rao LG, Muzaffar SA, et al. Age-dependent expression of osteoblastic phenotypic markers in normal human osteoblasts cultured long-term in the presence of dexamethasone. Osteoporos Int 1995, 5: 335–43.

    Article  PubMed  CAS  Google Scholar 

  25. Rao LG, Wylie JN, Sutherland MS, Murray TM. 17β-estradiol and parathyroid hormone potentiate each other’s stimulatory effects on alkaline phosphatase activity in SaOS-2 cells in a differentiation-dependent manner. Endocrinology 1994, 134: 614–20.

    PubMed  CAS  Google Scholar 

  26. Rao LG, Murray TM. Studies of human osteoblasts in vitro: estrogen actions and interactions with other hormones at different stages of differentiation. Drug Development Research 2000, 49: 174–86.

    Article  CAS  Google Scholar 

  27. Kotowicz MA, Klee GG, Rao PC, et al. Relationship between intact parathyroid hormone concentrations and bone remodelling in type I osteoporosis: evidence that skeletal sensitivity is increased. Osteoporos Int 1990, 1: 14–21.

    Article  PubMed  CAS  Google Scholar 

  28. Chavassieux PM, Chenu C, Valentin-Opran A, et al. Influence of experimental conditions on osteoblast activity in human primary bone cell cultures. J Bone Miner Res 1990, 5: 337–43.

    Article  PubMed  CAS  Google Scholar 

  29. Pfeilschifter J, Diel I, Pilz U, et al. Mitogenic responsiveness of human bone cells in vitro to hormones and growth factors decrease with age. J Bone Miner Res 1993, 8: 707–17.

    Article  PubMed  CAS  Google Scholar 

  30. Termine JD. Cellular activity, matrix proteins, and aging bone. Exp Gerontology 1990, 25: 217–21.

    Article  CAS  Google Scholar 

  31. Tsuji T, Hughes FJ, McCulloch CA, Melcher AH. Effects of donor age on osteogenic cells of rat bone marrow in vitro. Mech Ageing Dev 1990, 51: 121–32.

    Article  PubMed  CAS  Google Scholar 

  32. Liang CT, Barnes J, Seedor JG, et al. Impaired bone activity in aged rats: alterations at the cellular and molecular levels. Bone 1992, 13: 435–41.

    Article  PubMed  CAS  Google Scholar 

  33. Neidlinger-Wilke C, Stalla I, Claes L, et al. Human oste-oblasts from younger normal and osteoporotic donors show differences in proliferation and TGF-beta release in response to cyclic strain. J Biomech 1995, 28: 1411–8.

    Article  PubMed  CAS  Google Scholar 

  34. Sasse T, Becker P, Dorfling P, et al. TGF beta-1 mRNA expression and proliferation of human osteoblastic cells in nonosteoporotic and osteoporotic women under influence of TGF beta-1 and IGF-I. Calcif Tiss Int 1998, 62: 140–7.

    Article  CAS  Google Scholar 

  35. Byers RJ, Denton J, Hoyland JA, et al. Differential patterns of osteoblast dysfunction in trabecular bone in patients with established osteoporosis. J Clin Pathol 1997, 50: 760–4.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Kveiborg M, Kassem M, Langdahl B, Eriksen EF, Clark BF, Rattan SI. Telomere shortening during aging of human osteoblasts in vitro and leukocytes in vivo: lack of excessive telomere loss in osteoporotic patients. Mech Ageing Dev 1999, 106: 261–71.

    Article  PubMed  CAS  Google Scholar 

  37. Khosla S. Idiopathic osteoporosis — is the osteoblast to blame? J Clin Endocrinol Metab 1997, 82: 2792–4.

    PubMed  CAS  Google Scholar 

  38. Liesegang P, Romalo G, Sudmann M, et al. Human oste-oblast-like cells contain specific, saturable, high-affinity glucocorticoid, androgen, estrogen, and 1,25-dihydroxyc-holecalci-ferol receptors. J Andrology 1994, 15: 194–9.

    CAS  Google Scholar 

  39. Subramaniam M, Colvard D, Keeting PE, et al. Glucocorti-coid regulation of alkaline phosphatase, osteocalcin, and proto-oncogenes in normal human osteoblast-like cells. J Cell Biochem 1992, 50: 411–24.

    Article  PubMed  CAS  Google Scholar 

  40. Eriksen EF, Colvard DS, Berg NJ, et al. Evidence of estrogen receptors in normal human osteoblast-like cells. Science 1988, 241: 84–6.

    Article  PubMed  CAS  Google Scholar 

  41. Komm BS, Terpening CM, Benz DJ, et al. Estrogen binding, receptor mRNA, and biologic response in osteoblast-like osteosarcoma cells. Science 1988, 241: 81–4.

    Article  PubMed  CAS  Google Scholar 

  42. Levy FO, Ree AH, Eikvar L, et al. Glucocorticoid receptors and glucocorticoid effects in rat Sertoli cells. Endocrinology 1989, 124: 430–6.

    Article  PubMed  CAS  Google Scholar 

  43. Bergqvist A, Ferno M. Oestrogen and progesterone receptors in endometriotic tissue and endometrium: comparison of different cycle phases and ages. Hum Reprod 1993, 8: 2211–7.

    PubMed  CAS  Google Scholar 

  44. Kaur J, Thakur MK. Effect of age on physico-chemical properties of the uterine nuclear estrogen receptor of albino rats. Mech Ageing Dev 1991, 57: 111–23.

    Article  PubMed  CAS  Google Scholar 

  45. Horst RL, Goff JP, Reinhardt TA. Advancing age results in reduction of intestinal and bone 1,25-dihydroxyvitamin D receptors. Endocrinology 1990, 126: 1053–7.

    Article  PubMed  CAS  Google Scholar 

  46. Chen TL, Li JM, Ye TV, et al. Hormonal responses to 1,25-dihydroxyvitamin D in cultured mouse osteoblast-like cells: modulation by changes in receptor level. J Cell Physiol 1986, 126: 21–5.

    Article  PubMed  CAS  Google Scholar 

  47. Davis DL, Couse JF, Gray TK, Korach KS. Correlation between low levels of estrogen receptor and estrogen responsiveness in two rat osteoblast-like cell lines. J Bone Miner Res 1994, 9: 983–91.

    Article  PubMed  CAS  Google Scholar 

  48. Morrison NA, Qi JC, Tokita A, et al. Prediction of bone density from vitamin D receptor alleles. Nature 1994, 367: 284–7.

    Article  PubMed  CAS  Google Scholar 

  49. Brown MA, Haughton MA, Grant SF, Gunnell AS, Henderson NK, Eisman JA. Genetic control of bone density and turnover: role of the collagen 1alpha1, estrogen receptor, and vitamin D receptor genes. J Bone Miner Res 2001, 16: 758–64.

    Article  PubMed  CAS  Google Scholar 

  50. Salmen T, Heikkinen AM, Mahonen A, et al. Early postmeno-pausal bone loss is associated with PvuII estrogen receptor gene polymorphism in Finnish women: effect of hormone replacement therapy. J Bone Miner Res 2000, 15: 315–21.

    Article  PubMed  CAS  Google Scholar 

  51. Kobayashi N, Fujino T, Shirogane T, et al. Estrogen receptor alpha polymorphism as a genetic marker for bone loss, vertebral fractures and susceptibility to estrogen. Maturitas 2002, 41: 193–201.

    Article  PubMed  CAS  Google Scholar 

  52. Ralston SH. Genetic control of susceptibility to osteoporosis. J Clin Endocrinol Metab 2002, 87: 2460–6.

    Article  PubMed  CAS  Google Scholar 

  53. Duncan EL, Brown MA, Sinsheimer J, et al. Suggestive linkage of the parathyroid receptor type 1 to osteoporosis. J Bone Miner Res 1999, 14: 1993–9.

    Article  PubMed  CAS  Google Scholar 

  54. Kousteni S, Bellido T, Plotkin LI, et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 2001, 104: 719–30.

    PubMed  CAS  Google Scholar 

  55. Han HJ, Lee YH, Park SH. Estradiol-17beta-BSA stimulates Ca(2+) uptake through nongenomic pathways in primary rabbit kidney proximal tubule cells: involvement of cAMP and PKC. J Cell Physiol 2000, 183: 37–44.

    Article  PubMed  CAS  Google Scholar 

  56. Chan GK, Duque G. Age-related bone loss: old bone, new facts. Gerontology 2002, 48: 62–71.

    Article  PubMed  Google Scholar 

  57. Zhou S, Zilberman Y, Wassermann K, Bain SD, Sadovsky Y, Gazit D. Estrogen modulates estrogen receptor alpha and beta expression, osteogenic activity, and apoptosis in mesenchymal stem cells (MSCs) of osteoporotic mice. J Cell Biochem 2001, 36 (Suppl): 144–55.

    Article  Google Scholar 

  58. Cooper LF, Tiffee JC, Griffin JP, Hamano H, Guo Z. Estrogen-induced resistance to osteoblast apoptosis is associated with increased hsp27 expression. J Cell Physiol 2000, 185: 401–7.

    Article  PubMed  CAS  Google Scholar 

  59. Jilka RL, Weinstein RS, Bellido T, Roberson P, Parfitt AM, Manolagas SC. Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J Clin Invest 1999, 104: 439–46.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Stanislaus D, Yang X, Liang JD, et al. In vivo regulation of apoptosis in metaphyseal trabecular bone of young rats by synthetic human parathyroid hormone (1-34) fragment. Bone 2000, 27: 209–18.

    Article  PubMed  CAS  Google Scholar 

  61. Shalboub V, Conlon D, Tassineri M, et al. Glucocorticoids promote the development of the osteoblast phenotype by selectively modulating expression of cell growth and differentiation-associated genes. J Cell Biochem 1992, 50: 425–40.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, L.G., Murray, T.M., Wylie, J.N. et al. Long-term culture in dexamethasone unmasks an abnormal phenotype in osteoblasts isolated from osteoporotic subjects. J Endocrinol Invest 28, 919–927 (2005). https://doi.org/10.1007/BF03345324

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03345324

Key-words

Navigation