Skip to main content
Log in

Role of candidate genes in the lipid responses to intensified treatment in Type 2 diabetes

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Objective: To identify genetic factors related to individual differences in lipid responses to intensified treatment in Type 2 diabetes. Design and Methods: After evaluation and intensification of their treatment, 107 Type 2 diabetes patients with poor metabolic control were re-evaluated after mean follow-up time of 15.6 (0, 4) (SE) months. The genes coding major lipid regulatory proteins and their relations to plasma lipid and lipoprotein changes were studied. Results: During the follow- up, levels of glycohemoglobin A1 (GHBA1) decreased (−1.7%), plasma HDL cholesterol (+0.05 mmol/l) and lipoprotein (a) [Lp(a)] (+4.2 mg/dl) increased, while triglyceride (TG) levels decreased (−1.2mmol/l) despite mean weight gain of 2.1 kg (p from <0.01 to <0.001). Of the gene markers studied, the lipoprotein lipase (LPL) PvuII (p=0.005) independently affected changes in HDL-cholesterol and was associated with the frequency of coronary heart disease (CHD). Lp(a) changes were associated with apolipoprotein B (ApoB) Glu4154Lys polymorphism (p=0.004). Conclusions: These results suggest that genetic variations at LPL and ApoB loci are among the factors contributing to the variability in response to lipid parameters to therapy in Type 2 diabetes. LPL PvuII rare allele homozygote status seems to be beneficial with more favorable lipid changes and protection against CHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Howard BV. Lipoprotein metabolism in diabetes mellitus. J Lipid Res 1987, 28: 613–28.

    PubMed  CAS  Google Scholar 

  2. Nikkilä EA. High density lipoproteins in diabetes. Diabetes Care 1981, 30 (Suppl 2): 82–7.

    Article  Google Scholar 

  3. Taskinen M-R, Kuusi T, Helve E, Nikkilä EA, Yki-Järvinen H. Insulin therapy induces antiatherogenic changes of serum lipoproteins in noninsulin-dependent diabetes. Arteriosclerosis 1988, 8: 168–77.

    Article  PubMed  CAS  Google Scholar 

  4. Masson LF, McNeill G, Avenell A. Genetic variation and the lipid response to dietary intervention: a systematic review. Am J Clin Nutr 2003, 77: 1098–111.

    PubMed  CAS  Google Scholar 

  5. Rantala M, Rantala TT, Savolainen MJ, Friedlander Y, Kesäniemi YA. Apolipoprotein B gene polymorphism and serum lipids: meta-analysis of the role of genetic variation in responsiveness to diet. Am J Clin Nutr 2000, 71: 713–24.

    PubMed  CAS  Google Scholar 

  6. Ukkola O, Kervinen K, Salmela PI, von Dickhoff K, Laakso M, Kesäniemi YA. Apolipoprotein E phenotype is related to macro- and microangiopathy in patients with non-insulin- dependent diabetes mellitus. Atherosclerosis 1993, 101: 9–15.

    Article  PubMed  CAS  Google Scholar 

  7. Menzel H-J, Utermann G: Apolipoprotein E phenotyping from serum by Western blotting. Electrophoresis 1986, 7: 492–5.

    Article  CAS  Google Scholar 

  8. Lipid Research Clinics Manual of Laboratory Operations. Lipid and lipoprotein analysis. Department of Health, Education and Welfare (U.S.). Publication (National Institutes of Health) 1974, 1: 75–82.

    Google Scholar 

  9. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988, 16: 1215.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Juvonen T, Savolainen MJ, Kairaluoma MI, Lajunen LH, Humphries SE, Kesaniemi YA. Polymorphisms at the apoB, apoA-I, and cholesteryl ester transfer protein gene loci in patients with gallbladder disease. J Lipid Res 1995, 36: 804–12.

    PubMed  CAS  Google Scholar 

  11. Ukkola O, Savolainen MJ, Salmela PI, von Dickhoff K, Kesäniemi YA. DNA polymorphisms at the lipoprotein lipase gene are associated with macroangiopathy in type 2 (non-insulin-dependent) diabetes mellitus. Atherosclerosis 1995, 115: 99–105.

    Article  PubMed  CAS  Google Scholar 

  12. Ukkola O, Savolainen MJ, Salmela PI, von Dickhoff K, Kesäniemi YA. DNA polymorphisms at the locus for human cholesteryl ester transfer protein (CETP) are associated with macro- and microangiopathy in non-insulin-dependent diabetes mellitus. Clin Genet 1994, 46: 217–27.

    Article  PubMed  CAS  Google Scholar 

  13. Jackson RL. Lipoprotein lipase and hepatic lipase. In: Boyer P ed. The enzymes. New York: Academic Press. 1983, 16: 141–81.

    Article  CAS  Google Scholar 

  14. Eckel RH. Lipoprotein Lipase. In: Borensztajn J ed. Chigaco, IL: Evener Press. 1987, 79-132.

  15. Oka K, Tkalcevic GT, Nakano T, Tucker H, Ishimura-Oka K, Brown WV. Structure and polymorphic map of human lipoprotein lipase gene. Biochim Biophys Acta 1990, 1049: 21–6.

    Article  PubMed  CAS  Google Scholar 

  16. Scanu AM, Fless GM. Lp(a): heterogeneity and biological relevance. J Clin Invest 1990, 85: 1709–15.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Scanu AM. Atherothrombogenicity of lipoprotein (a): the debate. Am J Cardiol 1998, 82: 26Q–33Q.

    Article  PubMed  CAS  Google Scholar 

  18. Dunning AM, Tikkanen MJ, Ehnholm C, Butler R, Humphries SE. Relationships between DNA and protein polymorphisms of apolipoprotein B. Hum Genet 1988, 78: 325–9.

    Article  PubMed  CAS  Google Scholar 

  19. Ma YH, Schumaker V, Butler R, Sparkes R. Two DNA restriction fragment length polymorphisms associated with Ag(tz) and Ag(cg) antigenic sites of human apolipoprotein B. Arteriosclerosis 1987, 71: 301–5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Ukkola MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ukkola, O., Salonen, J. & Kesäniemi, Y.A. Role of candidate genes in the lipid responses to intensified treatment in Type 2 diabetes. J Endocrinol Invest 28, 871–875 (2005). https://doi.org/10.1007/BF03345317

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03345317

Key-words

Navigation