Skip to main content
Log in

Reduction of cardiovascular morbidity and mortality in Type 2 diabetes. A rational approach to hypoglycemic therapy

  • Review Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Type 2 diabetes mellitus is the single most important risk factor for the development of coronary artery disease. Unfortunately, the traditional therapeutic strategies for the treatment of hyperglycemia have proven to be ineffective in preventing cardiovascular complications. In recent years the number of available hypoglycemic agents has increased and considerable progress has been made regarding the comprehension of the pathophysiology of diabetes and its vascular complications. In the present article we firstly present benefits and risks of intensive vs standard hypoglyce-mic intervention, and the pros and cons of therapy targeted to postprandial hyperglycemia. Secondly, we discuss the cardiovascular effects of sulfonylurea agents and insulin, focusing on the role of intensive insulin treatment in the context of acute coronary syndromes. Thirdly, we review the epidemiological, clinical and experimental evidence linking insulin resistance and cardiovascular disease. Finally, we present the rationale and the role of metformin and thiazolidinedione therapy in the prevention of cardiovascular complications. We conclude that the optimal use of the full spectrum of hypoglycemic agents has the potential to play a key role in the prevention of diabetes-related macrovascular complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with Type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998, 352: 837–53.

    Article  PubMed  Google Scholar 

  2. Grundy SM, Benjamin IJ, Burke GL, et al. Diabetes and cardiovascular disease: a statement for healthcare profes-sionals from the American Heart Association. Circulation 1999, 100: 1134–46.

    Article  CAS  PubMed  Google Scholar 

  3. Gaede P, Vedel P, Larsen N, Jensen GV, Parving HH, Pedersen O. Multifactorial intervention and cardiovascular disease in patients with Type 2 diabetes. N Engl J Med 2003, 348: 383–93.

    Article  PubMed  Google Scholar 

  4. Uusitupa MI, Niskanen LK, Siitonen O, Voutilainen E, Pyörälä K. Ten-year cardiovascular mortality in relation to risk factors and abnormalities in lipoprotein composition in Type 2 (non-insulin-dependent) diabetic and non-diabetic subjects. Diabetologia 1993, 36: 1175–84.

    Article  CAS  PubMed  Google Scholar 

  5. Laakso M. Hyperglycemia and cardiovascular disease in Type 2 diabetes. Diabetes 1999, 48: 937–42.

    Article  CAS  PubMed  Google Scholar 

  6. Coutinho M, Gerstein HC, Wang Y, Yusuf S. The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care 1999, 22: 233–40.

    Article  CAS  PubMed  Google Scholar 

  7. Meinert CL, Knatterud GL, Prout TE, Klimt CR. A study of the effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes. II. Mortality results. Diabetes 1970, 19: 789–830.

    PubMed  Google Scholar 

  8. Effect of intensive blood-glucose control with metformin on complications in overweight patients with Type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998, 352: 854–65.

    Article  Google Scholar 

  9. Abraira C, Colwell JA, Nuttall FQ, et al. Veterans Affairs Cooperative Study on glycemic control and complications in type II diabetes (VA CSDM). Results of the feasibility trial. Veterans Affaires Cooperative Study in Type II Diabetes. Diabetes Care 1995, 18: 1113–23.

    Article  CAS  PubMed  Google Scholar 

  10. Abraira C, Colwell J, Nuttall F, et al. Cardiovascular events and correlates in the Veterans Affairs Diabetes Feasibility Trial. Veterans Affairs Cooperative Study on Glycemic Control and Complications in Type II Diabetes. Arch Intern Med 1997, 157: 181–8.

    Article  CAS  PubMed  Google Scholar 

  11. Duckworth WC, McCarren M, Abraira C. Glucose control and cardiovascular complications: the VA Diabetes Trial. Diabetes Care 2001, 24: 942–5.

    Article  CAS  PubMed  Google Scholar 

  12. Muggeo M, Zoppini G, Bonora E, et al. Fasting plasma glucose variability predicts 10-year survival of Type 2 diabetic patients: the Verona Diabetes Study. Diabetes Care 2000, 23: 45–50.

    Article  CAS  PubMed  Google Scholar 

  13. Brun E, Zoppini G, Zamboni C, Bonora E, Muggeo M. Glucose instability is associated with a high level of circulating p-selectin. Diabetes Care 2001, 24: 1685.

    Article  CAS  PubMed  Google Scholar 

  14. Bonora E, Muggeo M. Postprandial blood glucose as a risk factor for cardiovascular disease in Type II diabetes: the epidemiological evidence. Diabetologia 2001, 44: 2107–14.

    Article  CAS  PubMed  Google Scholar 

  15. Buse JB. Should postprandial glucose be routinely measured and treated to a particular target? No! Diabetes Care 2003, 26: 1615–8.

    Article  Google Scholar 

  16. Muggeo M, Bolli G, Bompiani G, et al. Glycemic control and cardiovascular diseases in Type 2 diabetes mellitus. Beyond fasting glycemia and glycosylated hemoglobin. Diabetes Nutr Metab 2000, 13: 182–5.

    CAS  PubMed  Google Scholar 

  17. Hanefeld M, Fischer S, Julius U, et al. Risk factors for myo-cardial infarction and death in newly detected NIDDM: the Diabetes Intervention Study, 11-year follow-up. Diabetologia 1996, 39: 1577–83.

    Article  CAS  PubMed  Google Scholar 

  18. DECODE Study Group, the European Diabetes Epidemiology Group. Glucose tolerance and cardiovascular mortality: comparison of fasting and 2-hour diagnostic criteria, Arch Intern Med 2001, 161: 397–405.

    Article  Google Scholar 

  19. Meigs JB, Nathan DM, D’Agostino RB Sr, Wilson PW; Framingham Offspring Study. Fasting and postchallenge glycemia and cardiovascular disease risk: the Framingham Offspring Study. Diabetes Care 2002, 25: 1845–50.

    Article  PubMed  Google Scholar 

  20. American Diabetes Association. Postprandial blood glucose. Diabetes Care 2001, 24: 775–8.

    Article  Google Scholar 

  21. Lebovitz HE. Effect of the postprandial state on nontraditional risk factors. Am J Cardiol 2001; 88: 20H–5H.

    Article  CAS  PubMed  Google Scholar 

  22. Inzucchi SE. Oral antihyperglycemic therapy for Type 2 diabetes: scientific review. JAMA 2002, 287: 360–72.

    Article  CAS  PubMed  Google Scholar 

  23. Klamann A, Sarfert P, Launhardt V, Schulte G, Schmiegel WH, Nauck MA. Myocardial infarction in diabetic vs nondiabetic subjects. Survival and infarct size following therapy with sulfonylureas (glibenclamide). Eur Heart J 2000, 21: 220–9.

    Article  CAS  PubMed  Google Scholar 

  24. Garratt KN, Brady PA, Hassinger NL, Grill DE, Terzic A, Holmes DR Jr. Sulfonylurea drugs increase early mortality in patients with diabetes mellitus after direct angioplasty for acute myocardial infarction. J Am Coll Cardiol 1999, 33: 119–24.

    Article  CAS  PubMed  Google Scholar 

  25. Johnson JA, Majumdar SR, Simpson SH, Toth EL. Decreased mortality associated with the use of metformin compared with sulfonylurea monotherapy in Type 2 diabetes. Diabetes Care 2002, 25: 2244–8.

    Article  CAS  PubMed  Google Scholar 

  26. Sturgess NC, Ashford ML, Cook DL, Hales CN. The sulpho-nylurea receptor may be an ATP-sensitive potassium channel. Lancet 1985, 2: 474–5.

    Article  CAS  PubMed  Google Scholar 

  27. Daut J, Maier-Rudolph W, von Beckerath N, Mehrke G, Gunther K, Goedel-Meinen L. Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Science 1990, 247: 1341–4.

    Article  CAS  PubMed  Google Scholar 

  28. Cole WC, McPherson CD, Sontag D. ATP-regulated K+ channels protect the myocardium against ischemia/reperfusion damage. Circ Res 1991, 69: 571–81.

    Article  CAS  PubMed  Google Scholar 

  29. Bijlstra PJ, den Arend JA, Lutterman JA, Russel FG, Thien T, Smits P. Blockade of vascular ATP-sensitive potassium channels reduces the vasodilator response to ischaemia in humans. Diabetologia 1996, 39: 1562–8.

    Article  CAS  PubMed  Google Scholar 

  30. Tomai F, Crea F, Gaspardone A, et al. Ischemic preconditioning during coronary angioplasty is prevented by glibenclamide, a selective ATP-sensitive K+ channel blocker. Circulation 1994, 90: 700–5.

    Article  CAS  PubMed  Google Scholar 

  31. Bijlstra PJ, Lutterman JA, Russel FG, Thien T, Smits P. Interaction of sulphonylurea derivatives with vascular ATP-sensitive potassium channels in humans. Diabetologia 1994, 39: 1083–90.

    Article  Google Scholar 

  32. Klepzig H, Kober G, Matter C, et al. Sulfonylureas and ischaemic preconditioning; a double-blind, placebo-controlled evaluation of glimepiride and glibenclamide. Eur Heart J 1999, 20: 439–46.

    Article  CAS  PubMed  Google Scholar 

  33. Posa I, Kocsis E, Nieszner E, Pogatsa G, Koltai MZ. Haemo-dynamic and metabolic effects of low daily dose sulphony-lureas in diabetic dog hearts. Arzneimittelforschung 2002, 52: 552–9.

    CAS  PubMed  Google Scholar 

  34. Spallarossa P, Schiavo M, Rossettin P, et al. Sulfonylurea treatment of Type 2 diabetic patients does not reduce the vasodilator response to ischemia. Diabetes Care 2001, 24: 738–42.

    Article  CAS  PubMed  Google Scholar 

  35. Scognamiglio R, Avogaro A, Vigili de Kreutzenberg S, et al. Effects of treatment with sulfonylurea drugs or insulin on ischemia-induced myocardial dysfunction in Type 2 diabetes. Diabetes 2002, 51: 808–12.

    Article  CAS  PubMed  Google Scholar 

  36. American diabetes association policy statement: the UGDP controversy. Diabetes Care 1979, 2: 1–3.

    Google Scholar 

  37. Gribble FM, Reimann F. Sulphonylurea action revisited: the postcloning era. Diabetologia 2003, 46: 875–91.

    Article  CAS  PubMed  Google Scholar 

  38. Caulfield MT, O’Brien KD. Cardiovascular safety of oral antidiabetic agents: the insulin secretagogues. Clin Diabetes 2002, 20: 81–4.

    Article  Google Scholar 

  39. Welborn TA, Wearne K. Coronary heart disease incidence and cardiovascular mortality in Busselton with reference to glucose and insulin concentrations. Diabetes Care 1979, 2: 154–60.

    Article  CAS  PubMed  Google Scholar 

  40. Spallarossa P, Cordera R, Andraghetti G, Bertero G, Brunelli C, Caponnetto S. Association between plasma insulin and angiographically documented significant coronary artery disease. Am J Cardiol 1994, 74: 177–9.

    Article  CAS  PubMed  Google Scholar 

  41. Stout RW. Insulin and atheroma—an update. Lancet 1987, 1: 1077–9.

    Article  CAS  PubMed  Google Scholar 

  42. Nordt TK, Sawa H, Fujii S, Sobel BE. Induction of plasmino-gen activator inhibitor type-1 (PAI-1) by proinsulin and insulin in vivo. Circulation 1995, 91: 764–70.

    Article  CAS  PubMed  Google Scholar 

  43. Arcaro G, Cretti A, Balzano S, et al. Insulin causes endothe-lial dysfunction in humans: sites and mechanisms. Circulation 2002, 105: 576–82.

    Article  CAS  PubMed  Google Scholar 

  44. Chen YL, Messina EJ. Dilation of isolated skeletal muscle arterioles by insulin is endothelium dependent and nitric oxide mediated. Am J Physiol 1996, 270 (Pt 2): H2120–4.

    CAS  PubMed  Google Scholar 

  45. Dandona P, Aljada A, Mohanty P, et al. Insulin inhibits intranuclear nuclear factor kappaB and stimulates IkappaB in mononuclear cells in obese subjects: evidence for an anti-inflammatory effect? J Clin Endocrinol Metab 2001, 86: 3257–65.

    CAS  PubMed  Google Scholar 

  46. Ginsberg HN. Insulin resistance and cardiovascular disease. J Clin Invest 2000, 106: 453–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Williams SB, Goldfine AB, Timimi FK, et al. Acute hyperglycemia attenuates endothelium-dependent vasodilation in humans in vivo. Circulation 1998, 97: 1695–701.

    Article  CAS  PubMed  Google Scholar 

  48. Gerich JE. Novel insulins: expanding options in diabetes management. Am J Med 2002, 113: 308–16.

    Article  CAS  PubMed  Google Scholar 

  49. Malmberg K, Ryden L, Efendic S, et al. Randomized trial of insulin-glucose infusion followed by subcutaneous insulin treatment in diabetic patients with acute myocardial infarction (DIGAMI study): effects on mortality at 1 year. J Am Coll Cardiol 1995, 26: 57–65.

    Article  CAS  PubMed  Google Scholar 

  50. van den Berghe G, Wouters P, Weekers F, et al. Intensive insulin therapy in the critically ill patients. N Engl J Med 2001, 345: 1359–67.

    Article  PubMed  Google Scholar 

  51. Iwakura K, Ito H, Ikushima M, Kawano S, et al. Association between hyperglycemia and the no-reflow phenomenon in patients with acute myocardial infarction. J Am Coll Cardiol 2003, 41: 1–7.

    Article  CAS  PubMed  Google Scholar 

  52. Verma S, Maitland A, Weisel RD, et al. Increased endothelin-1 production in diabetic patients after cardioplegic arrest and reperfusion impairs coronary vascular reactivity: reversal by means of endothelin antagonism. J Thorac Cardiovasc Surg 2002, 123: 1114–9.

    Article  CAS  PubMed  Google Scholar 

  53. Vetter NJ, Strange RC, Adams W, Oliver MF. Initial metabolic and hormonal response to acute myocardial infarction. Lancet 1974, 1: 284–8.

    Article  CAS  PubMed  Google Scholar 

  54. Rackley CE, Russell RO Jr, Rogers WJ, Mantle JA, McDaniel HG, Papapietro SE. Clinical experience with glucose-insulin-potassium therapy in acute myocardial infarction. Am Heart J 1981, 102: 1038–49.

    Article  CAS  PubMed  Google Scholar 

  55. Zierler KL. Possible mechanisms of insulin action on membrane potential and ion fluxes. Am J Med 1966, 40: 735–9.

    Article  CAS  PubMed  Google Scholar 

  56. Nygren J, Carlsson-Skwirut C, Brismar K, Thorell A, Ljungqvist O, Bang P. Insulin infusion increases levels of free IGF-I and IGFBP-3 proteolytic activity in patients after surgery. Am J Physiol Endocrinol Metab 2001, 281: E736–41.

    CAS  PubMed  Google Scholar 

  57. Spallarossa P, Brunelli C, Minuto F, et al. Insulin-like growth factor-I and angiographically documented coronary artery disease. Am J Cardiol 1996, 77: 200–2.

    Article  CAS  PubMed  Google Scholar 

  58. Haffner SM, Stern MP, Hazuda HP, Mitchell BD, Patterson JK. Cardiovascular risk factors in confirmed prediabetic individuals. Does the clock for coronary heart disease start ticking before the onset of clinical diabetes? JAMA 1990, 263: 2893–8.

    Article  CAS  PubMed  Google Scholar 

  59. Cusi K, Maezono K, Osman A, et al. Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest 2000, 105: 311–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Kirpichnikov D, McFarlane SI, Sowers JR. Metformin: an update. Ann Intern Med 2002, 137: 25–33.

    Article  CAS  PubMed  Google Scholar 

  61. Mithieux G, Guignot L, Bordet JC, Wiernsperger N. Intra-hepatic mechanisms underlying the effect of metformin in decreasing basal glucose production in rats fed a high-fat diet. Diabetes 2002, 5:139–43.

    Article  Google Scholar 

  62. Bailey CJ, Turner RC. Metformin. N Engl J Med 1996, 334: 574–9.

    Article  CAS  PubMed  Google Scholar 

  63. Wu MS, Johnston P, Sheu WH, et al. Effect of metformin on carbohydrate and lipoprotein metabolism in NIDDM patients. Diabetes Care 1990, 13: 1–8.

    Article  CAS  PubMed  Google Scholar 

  64. Grant PJ, Stickland MH, Booth NA, Prentice CR. Metformin causes a reduction in basal and post-venous occlusion plas-minogen activator inhibitor-1 in Type 2 diabetic patients. Diabet Med 1991, 8: 361–5.

    Article  CAS  PubMed  Google Scholar 

  65. Salpeter S, Greyber E, Pasternak G, Salpeter E. Risk of fatal and nonfatal lactic acidosis with metformin use in Type 2 diabetes mellitus (Cochrane Review). Cochrane Database Syst Rev 2003, (2): CD002967.

    PubMed  Google Scholar 

  66. Jones GC, Macklin JP, Alexander WD. Contraindications to the use of metformin. BMJ 2003, 326: 4–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Furnsinn C, Waldhausl W. Thiazolidinediones: metabolic actions in vitro. Diabetologia 2002, 45: 1211–23.

    Article  CAS  PubMed  Google Scholar 

  68. Sunayama S, Watanabe Y, Daida H, Yamaguchi H. Thiazoli-dinediones, dyslipidaemia and insulin resistance syndrome. Curr Opin Lipidol 2000, 11: 397–402.

    Article  CAS  PubMed  Google Scholar 

  69. Hsueh WA, Law RE. PPARgamma and atherosclerosis: effects on cell growth and movement. Arterioscler Thromb Vasc Biol 2001, 21: 1891–5.

    Article  CAS  PubMed  Google Scholar 

  70. Fernandez-Real JM, Ricart W. Insulin resistance and chronic cardiovascular inflammatory syndrome. Endocr Rev 2003, 24: 278–301.

    Article  CAS  PubMed  Google Scholar 

  71. Ross R. Atherosclerosis: an inflammatory disease. Lancet 1999, 340: 115–26.

    CAS  Google Scholar 

  72. Barbier O, Torra IP, Duguay Y, et al. Pleiotropic actions of peroxisome proliferator-activated receptors in lipid metabolism and atherosclerosis. Arterioscler Thromb Vasc Biol 2002, 22: 717–26.

    Article  CAS  PubMed  Google Scholar 

  73. Chu NV, Kong AP, Kim DD, et al. Differential effects of metformin and troglitazone on cardiovascular risk factors in patients with Type 2 diabetes. Diabetes Care 2002, 25: 542–9.

    Article  CAS  PubMed  Google Scholar 

  74. Haffner SM, Greenberg AS, Weston WM, Chen H, Williams K, Freed MI. Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with Type 2 diabetes mellitus. Circulation 2002, 106: 679–84.

    Article  CAS  PubMed  Google Scholar 

  75. Koshiyama H, Shimono D, Kuwamura N, Minamikawa J, Nakamura Y. Inhibitory effect of pioglitazone on carotid arterial wall thickness in Type 2 diabetes. J Clin Endocrinol Metab 2001, 86: 3452–6.

    Article  CAS  PubMed  Google Scholar 

  76. Murakami T, Mizuno S, Ohsato K, et al. Effects of troglita-zone on frequency of coronary vasospastic-induced angina pectoris in patients with diabetes mellitus. Am J Cardiol 1999, 84: 92–4.

    Article  CAS  PubMed  Google Scholar 

  77. Takagi T, Yammamuro A, Tamita K, et al. Impact of troglitazone on coronary stent implantation using small stents in patients with Type 2 diabetes mellitus. Am J Cardiol 2002, 89: 318–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Spallarossa MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spallarossa, P., Barsotti, A., Cordera, R. et al. Reduction of cardiovascular morbidity and mortality in Type 2 diabetes. A rational approach to hypoglycemic therapy. J Endocrinol Invest 27, 485–495 (2004). https://doi.org/10.1007/BF03345297

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03345297

Key-words

Navigation