Skip to main content
Log in

Identification of genes in thyrocytes regulated by unfolded protein response by using disulfide bond reducing agent of dithiothreitol

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Disulfide bonds are formed between the sulfhydryl groups in two cysteine residues of a protein. The formation of these bonds is necessary for the proper folding of a protein into its active three-dimensional form. In this study, the genes associated with disulfide bond formation of proteins from the rat thyroid cell line, FRTL-5 cell, were investigated using disulfide bond reducing agent of dithiothreitol (DTT), which prevented disulfide formation of newly synthesized proteins. The expression of six genes, they being the cAMP phosphodiesterase 7A1, neuronal cell death inducible putative kinase (NIPK), cytosolic LIM protein (Ajuba), Eker, early growth response 1 and the ferritin heavy chain, was specifically enhanced under both reductive conditions and various endoplasmic reticulum (ER) stresses inducing drugs such as Brefeldin A (BFA), calcium ionophore A23187 (A23187) and tunicamycin. These results suggest that a suitable redox environment is necessary for the correct disulfide bond conformation in thyrocytes in a complex system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ellis R.J. Discovery of molecular chaperones. Cell Stress Chaperones 1996, 1: 155–160.

    Article  PubMed  CAS  Google Scholar 

  2. Gething M.J. Role and regulation of the ER chaperone BiP. Semin. Cell Dev. Biol. 1999, 10: 465–472.

    Article  PubMed  CAS  Google Scholar 

  3. Mori K. Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 2000, 101: 451–454.

    Article  PubMed  CAS  Google Scholar 

  4. Kim P.S., Arvan P. Endocrinopathies in the family of endoplasmic reticulum (ER) storage diseases: disorders of protein trafficking and the role of ER molecular chaperones. Endocr. Rev. 1998, 19: 173–202.

    PubMed  CAS  Google Scholar 

  5. Noiva R. Protein disulfide isomerase: the multifunctiona redox chaperone of the endoplasmic reticulum. Semin. Cell Dev. Biol. 1999, 10: 481–493.

    Article  PubMed  CAS  Google Scholar 

  6. Frand A.R., Cuozzo J.W., Kaiser C.A. Pathways for protein disulphide bond formation. Trends Cell Biol. 2000, 10: 203–210.

    Article  PubMed  CAS  Google Scholar 

  7. Doutheil J., Treiman M., Oschlies U., Paschen W. Recovery of neuronal protein synthesis after irreversible inhibition of the endoplasmic reticulum calcium pump. Cell Calcium 1999, 25: 419–428.

    Article  PubMed  CAS  Google Scholar 

  8. Kwon O.Y., Park S., Lee W., You K.H., Kim H., Shong M. TSH regulates a gene expression encoding ERp29, an endoplasmic reticulum stress protein, in the thyrocytes of FRTL-5 cells. FEBS Lett. 2000, 475: 27–30.

    Article  PubMed  CAS  Google Scholar 

  9. Diatchenko L., Lau Y.F., Campbell A.P. et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 1996, 93: 6025–6030.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Wang P., Wu P., Egan R.W., Billah M.M. Cloning, characterization, and tissue distribution of mouse phosphodiesterase 7A1. Biochem. Biophys. Res. Commun. 2000, 276: 1271–1277.

    Article  PubMed  CAS  Google Scholar 

  11. Mayumi-Matsuda K., Kojima S., Suzuki H., Sakata T. Identification of a novel kinase-like gene induced during neuronal cell death. Biochem. Biophys. Res. Commun. 1999, 258: 260–264.

    Article  PubMed  CAS  Google Scholar 

  12. Kanungo J., Pratt S.J., Marie H., Longmore G.D. Ajuba, a cytosolic LIM protein, shuttles into the nucleus and affects embryonal cell proliferation and fate decisions. Mol. Biol. Cell 2000, 11: 3299–3313.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Xiao G.H., Jin F., Yeung R.S. Germ-line Tsc2 mutation in a dominantly inherited cancer model defines a novel family of rat intracisternal-A particle elements. Oncogene 1995, 11: 81–87.

    PubMed  CAS  Google Scholar 

  14. Yan S.F., Fujita T., Lu J. et al. Egr-1, a master switch coordinating upregulation of divergent gene families underlying ischemic stress. Nat. Med. 2000, 6: 1355–1361.

    Article  PubMed  CAS  Google Scholar 

  15. Orino K., Lehman L, Tsuji Y., Ayaki H., Torti S.V., Torti F.M. Ferritin and the response to oxidative stress. Biochem. J. 2001, 357: 241–247.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Balla G., Jacob H.S., Balla J. et al. Ferritin: a cytoprotective antioxidant strategem of endothelium. J. Biol. Chem. 1992, 267: 18148–18153.

    PubMed  CAS  Google Scholar 

  17. Patil C, Walter P. Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr. Opin. Cell Biol. 2001, 13: 349–355.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O-Yu Kwon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S., Hwang, I., Shong, M. et al. Identification of genes in thyrocytes regulated by unfolded protein response by using disulfide bond reducing agent of dithiothreitol. J Endocrinol Invest 26, 132–137 (2003). https://doi.org/10.1007/BF03345141

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03345141

Key-words

Navigation