Skip to main content
Log in

Moexipril and quinapril inhibition of tissue angiotensin-converting enzyme activity in the rat: Evidence for direct effects in heart, lung and kidney and stimulation of prostacyclin generation

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

The activation of angiotensin converting enzyme (ACE) may contribute to the development of vascular and myocardial structural changes. The level of ACE is stable in human plasma, and only limited data are available on its regulation at the tissue level. The aim of this study was to characterize the effects of two ACE inhibitors, moexipril and quinapril on tissue ACE activity. Adult male rats were treated intragastrically once daily for 6 days either with 2 mg/kg moexipril or quinapril. After single treatment, moexipril and quinapril effectively inhibited ACE activity in plasma and slightly in heart and aorta, whereas after 6 days of treatment they inhibited ACE activity in plasma (87% and 94%, respectively), lung (92% and 93%), myocardium (26% and 23%), kidney (21% and 20%), and aorta (39% and 40%), but not in skeletal muscle. Interestingly, the two ACE-inhibitors also induced a significant increase in cardiac homogenates of 6-keto-PGF levels, an important index of PGI2 generation. To test whether the reduced effects of ACE inhibitors in heart and kidney were caused by a limited availability of the drugs, 100 μl of lung, heart and kidney homogenates from control rats were incubated in vitro with moexipril and quinapril immediately before assay. Both drugs were more effective in lung than heart and kidney homogenates, with inhibition values superimposable to those obtained in vivo. These results clearly indicate that inhibition of tissue ACE activity does not depend primarily on the availability of ACE inhibitors in each organ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ryan U.S., Ryan J. W., Whitaker C., Chiu A. Localization of angiotensin converting enzyme (kininase II). I. Preparation of antibody-hemeoctapeptide conjugates. Tissue Cell 1976, 8: 125–145.

    Article  PubMed  CAS  Google Scholar 

  2. Beldent V., Michaud A., Wei L., Chauvet M.-T., Corvol P. Proteolytic release of human angiotensin-converting enzyme. Localization of the cleavage site. J. Biol. Chem. 1993, 268: 26428–26434.

    PubMed  CAS  Google Scholar 

  3. Corvol P., Williams T. A., Soubrier F. Peptidyl dipeptidase A: angiotensin I-converting enzyme. Methods Enzymol. 1995, 248: 283–305.

    Article  PubMed  CAS  Google Scholar 

  4. Alhenc-Gelas F., Richard J., Courbon D., Warnet J.M., Corvol P. Distribution of plasma angiotensin I-converting enzyme levels in healthy men: relationship to environmental and hormonal parameters. J. Lab. Clin. Med. 1991, 117: 33–39.

    PubMed  CAS  Google Scholar 

  5. Shiota N., Miyazaki M., Okunishi H. Increase of angiotensin converting enzyme gene expression in the hypertensive aorta. Hypertension 1992, 20: 168–174.

    Article  PubMed  CAS  Google Scholar 

  6. Takemoto M., Egashira K., Usui M. et al. Important role of tissue angiotensin-converting enzyme activity in the pathogenesis of coronary vascular and myocardial structural changes induced by long-term blockade of nitric oxide synthesis in the rat. J. Clin. Invest. 1997, 99: 278–287.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Schieffer B., Wirger A., Meybrunn M. et al. Comparative effects of angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade on cardiac remodeling after myocardial infarction in the rat. Circulation 1994, 89: 2273–2282.

    Article  PubMed  CAS  Google Scholar 

  8. Weinberg E.O., Schoen F.J., George D. et al. Angiotensincon-verting enzyme inhibition prolongs survival and modifies the transition to heart failure in rats with pressure overload hypertrophy due to ascending aortic stenosis. Circulation 1994, 90: 1410–1422.

    Article  PubMed  CAS  Google Scholar 

  9. Schunkert H., Dzau V.J., Tan S.S., Hirsch A.T., Apstein C.S., Lorell B.H. Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy: effects on coronary resistance, contractility and relaxation. J. Clin. Invest. 1990, 86: 1913–1920.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Hirsch A.T., Schunkert H., Paul M., Dzau V.J. Tissue-specific activation of cardiac angiotensin converting enzyme in experimental heart failure. Circ. Res 1991, 69: 475–482.

    Article  PubMed  CAS  Google Scholar 

  11. Schunkert H., Ingelfinger J.R., Hirsch A.T. et al. Evidence for tissue-specific activation of renal angiotensin mRNA expression in chronic stable experimental heart failure. J. Clin. Invest. 1992, 90: 1523–1529.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Challah M., Nicoletti A., Arnal J.F. et al. Cardiac angiotensin converting enzyme overproduction indicates interstitial activation in renovascular hypertension. Cardiovasc. Res. 1995, 30: 231–239.

    Article  PubMed  CAS  Google Scholar 

  13. Santos R.A.S., Krieger E.M., Greene L.J. An improved fluorometric assay of rat serum and plasma converting enzyme. Hypertension 1985, 7: 244–252.

    Article  PubMed  CAS  Google Scholar 

  14. Pradelles P., Grassi J., Maclouf J. Enzyme immunoassays of eicosanoids using acetylcholine esterase as label: an alternative to radioimmunoassay. Anal. Chem. 1985, 57: 1170–1173.

    Article  PubMed  CAS  Google Scholar 

  15. Rigat B., Hubert C., Alhenc-Gelas F., Cambien F., Corvol P., Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Invest. 1990, 86: 1343–1346.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Costerousse O., Allegrini J., Lopez M., Alhenc-Gelas F. Angiotensin I-converting enzyme in human circulating mononuclear cells: genetic polymorphism of expression in T-lymphocytes. Biochem. J. 1993, 290: 33–40.

    PubMed Central  PubMed  CAS  Google Scholar 

  17. Danser A.H., Schalekamp M.A., Bax W.A. et al. Angiotensin-converting enzyme in the human heart. Effect of the deletion/insertion polymorphism. Circulation 1995, 92: 1387–1388.

    Article  PubMed  CAS  Google Scholar 

  18. Villard E., Soubrier F. Molecular biology and genetics of the angiotensin I-converting enzyme: potential implications in cardiovascular diseases. Cardiovasc. Res. 1996, 32: 999–1007.

    Article  PubMed  CAS  Google Scholar 

  19. Unger T.H., Schüll B., Rascher W., Lang R.E., Ganten D. Selective activation of the converting enzyme inhibitor MK-421 and comparison of its active diacid form with captopril in different tissues of the rat. Biochem. Pharmacol. 1982, 31: 3063–3070.

    Article  PubMed  CAS  Google Scholar 

  20. Andrade M.C., Quinto B.M., Carmona A.K. et al. Purification and characterization of angiotensin I-converting enzymes from mesangial cells in culture. J. Hypertension 1998, 16: 2063–2074.

    Article  CAS  Google Scholar 

  21. Re R. The myocardial intracellular renin-angiotensin system. Am. J. Cardiol. 1987, 59: 56A–58A.

    Article  PubMed  CAS  Google Scholar 

  22. Frohlich E.D. Overview of hemodynamic and non-hemodynamic factors associated with left ventricular hypertrophy. J. Mol. Cell. Cardiol. 1989, 21: 3–10.

    Article  PubMed  Google Scholar 

  23. Schelling P., Fischer H., Ganten D. Angiotensin and cell growth — a link to cardiovascular hypertrophy. J. Hypertens. 1991, 9: 3–15.

    Article  PubMed  CAS  Google Scholar 

  24. Edling O., Bao G., Feelisch M., Unger T., Gohlke P. Moexipril, a new angiotensin-converting enzyme (ACE) inhibitor: pharmacological characterization and comparison with enalapril. J. Pharm. Exp. Ther. 1995, 275: 854–863.

    CAS  Google Scholar 

  25. Caldwell P.R.B., Seegal B.C., Hsu K.C., Das M., Soffer R.L. Angiotensin converting enzyme: vascular endothelial localization. Science 1976, 191: 1050–1051.

    Article  PubMed  CAS  Google Scholar 

  26. Gohlke P., Bunning P., Unger T.H. Distribution and metabolism of angiotensin I and II in the blood vessel wall. Hypertension 1992, 20: 151–157.

    Article  PubMed  CAS  Google Scholar 

  27. Berg T., Sulner J., Lai C.Y., Soffer R.L. Immunohistochemical localization of two angiotensin I-converting isoenzymes in the reproductive tract of the male rabbit. J. Histochem. Cytochem. 1986, 34: 753–760.

    Article  PubMed  CAS  Google Scholar 

  28. Busse R., Fleming I., Hecker M. Endothelium-derived bradykinin: implications for angiotensin-converting enzymeinhibitor therapy. J. Cardiovasc. Pharm. 1993, 22: 531–536.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torsello, A., Locatelli, V., Cella, S.G. et al. Moexipril and quinapril inhibition of tissue angiotensin-converting enzyme activity in the rat: Evidence for direct effects in heart, lung and kidney and stimulation of prostacyclin generation. J Endocrinol Invest 26, 79–83 (2003). https://doi.org/10.1007/BF03345127

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03345127

Key-words

Navigation