Skip to main content
Log in

Oxidative markers in diabetic ketoacidosis

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Oxidative stress has been implicated in the pathogenesis of the chronic complications of diabetes mellitus but little is known in diabetic ketoacidosis (DKA). The aim of this work was to determine whether lipid peroxidation, as assessed by measuring malondialdehyde (MDA, a prooxidant) and antioxidant status (TAS, an index of antioxidant defenses), is modified in DKA, and also whether any observed abnormalities were related to metabolic disturbances. Methods: four groups of patients were studied, comprising 19 patients with DKA, massive ketonuria and plasma standard bicarbonate levels below 16 mmol/l (group 1); 20 patients with poorly controlled diabetes, glycated hemoglobin (HbA1c) above 8% and plasma bicarbonate levels above 16 mmol/l (group 2); 11 patients with well-controlled diabetes and HbA1c below 8% (group 3); and 10 non-diabetic, non-obese control subjects (group 4). Metabolic parameters, MDA levels and TAS were assessed in the plasma of the four groups of subjects. Results: mean plasma MDA and TAS values were significantly different among the four groups (respectively p<0.001 and p<0.01). Mean plasma MDA value was significantly higher in group 1 than in group 3 (p<0.02) and group 4 (p<0.001) but was not different from that in group 2. Mean plasma MDA value in group 2 was significantly lower than that in group 4 (p=0.002). Mean plasma TAS value in group 1 was significantly lower than in groups 3 (p<0.002) and 4 (p<0.05). Mean plasma TAS value was significantly lower in group 2 than in group 4 (p<0.05). Plasma MDA values in the diabetic patients (groups 1+2+3) were not related to any clinical characteristics (BMI, age, duration of the disease) or metabolic parameters (glycemia, HbA1c, bicarbonates, blood urea nitrogen, phosphatemia, lipids), while plasma TAS values correlated negatively with glycemia, osmolality and HbA1c. A significant relationship was also found between TAS and HbA1c in group 1 (p<0.05) and between MDA and HbA1c in group 3 (p<0.05). Correlations were also found between TAS and phosphatemia in group 1 (p<0.01) and between MDA and phosphatemia in group 2 (p<0.01). A positive relationship between MDA and cholesterol levels was found in group 1 (p<0.01). In conclusion, MDA values are increased and TAS values decreased in DKA and poorly controlled diabetes, and tend to correlate more with markers of diabetic imbalance than with markers of acute metabolic disturbances of DKA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baynes H.N.W. Role of oxidative stress in development of complications in diabetes Diabetes 1991, 40: 405–411

    Article  CAS  PubMed  Google Scholar 

  2. Yue D.K, Mc Lennan S., Fischer E. Ascorbic acid metabolism and the polyols pathway in diabetes. Diabetes 1989, 38: 257–261.

    Article  CAS  PubMed  Google Scholar 

  3. Wolff S.P. Diabetes mellitus and free radicals. Br. Med. Bull. 1993, 49: 642–652.

    CAS  PubMed  Google Scholar 

  4. Altomare E., Vendemiale G., Chicco D., Procacci V., Cirelli F. Increased lipid peroxydation in type II poorly controlled diabetic patients. Diabetes Metab. 1992, 17: 264–271.

    Google Scholar 

  5. Griesmacher A., Kindhauser M., Andert S.E., Schreiner W., Toma C., Knoebl P., Pietschmann P., Prager R., Schnack C. Enhanced serum levels of thiobarbituric-acid-reactive substances in diabetes mellitus. Am. J. Med. 1995, 98: 469–475.

    Article  CAS  PubMed  Google Scholar 

  6. Santini S.A, Mara G., Giardina B., Cotroneo P., Mordente A., Martorana G.E., Manto A., Ghirlanda G. Defective plasma antioxydant defenses and enhanced susceptibility to lipid peroxydation in uncomplicated IDDM. Diabetes 1997, 46: 1853–1858.

    Article  CAS  PubMed  Google Scholar 

  7. Kaji H., Kurasak M., Ito K. Increased lipoperoxide value and gluthatione peroxydase activity in blood plasma of type 2 (non insulin dependent diabetic women). Klin. Wochenschr. 1985, 63: 765–768.

    Article  CAS  PubMed  Google Scholar 

  8. Uzel N., Sivas A., Uysal M., Oz H. Erythrocyte lipid peroxydation and gluthathione peroxidase activities in patients with diabetes mellitus Horm. Metab. Res. 1987, 19: 89–90.

    Article  CAS  Google Scholar 

  9. Gallou G., Ruelland A., Legras B., Maugendre D., Allanic H., Cloarec L. Plasma malondialdehyde in type I and II diabetic patients. Clin. Chem. Acta 1993, 214: 227–231.

    Article  CAS  Google Scholar 

  10. Ndahimana J., Dorchy H., Vertongen F. Erythrocyte and plasma antioxidant activity in diabetes mellitus type I. Presse Med. 1996, 25: 188–192.

    CAS  PubMed  Google Scholar 

  11. Jos J., Rybak M., Patin P.H., Robert J.J., Boitard C., Thevenin R. Antioxidant enzymes in insulin-dependent diabetes in the child and adolescent. Diabetes Metab. 1990, 16: 498–503.

    CAS  Google Scholar 

  12. Maxwell S.R., Thomason H., Sandler D., Leguen C., Baxter M.A., Thorpe G.H., Jones A.F., Barnett A.H. Antioxydant status in patients with uncomplicated insulin-dependent and non-insulin-dependent diabetes mellitus. Eur. J. Clin. Invest. 1997, 27: 484–490.

    Article  CAS  PubMed  Google Scholar 

  13. Cerrelio A., Bortolotti N., Falleti E., Toboga C., Tonnutti L. Total radical trapping antioxydant parameter in NIDDM patients. Diabetes Care 1997, 20: 194–197.

    Article  Google Scholar 

  14. Collier A., Wilson R., Bradley H., Thomson J.A., Small M. Free radical in type II diabetes. Diabet. Med. 1990, 7: 27–30.

    Article  CAS  PubMed  Google Scholar 

  15. Bono A., Caimi G., Catania A., Sarno A., Pandolfo L. Red cell peroxyde metabolism in diabetes mellitus. Horm. Metab. Res. 1987, 19: 264–266.

    Article  CAS  PubMed  Google Scholar 

  16. Arai K., Lisuka S., Tada S., et al. Increase in the glycosylated form of erythrocyte Cu- Zinc superoxyde dismutase in diabetes and close association of the non enzymatic glycosylation with the enzyme activity. Biochem. Biophys. Acta 1987, 924: 292–296.

    Article  CAS  PubMed  Google Scholar 

  17. Rabinovitch A., Wilma L., Suarez-Pinzon L., Strynadaka K., Jonathan R., Lakey R.T., Rajotte V. Human pancreatic islet β cell destruction by cytokines involves oxygen free radicals and aldehyde production. J. Clin. Endocrinol. Metab. 1996, 81: 3197–3302.

    CAS  PubMed  Google Scholar 

  18. Rocie B., Vuci M., Kezebic-Cuca J., Radica A. Total plasma antioxydants in first degree relatives of patients with insulin dependent diabetes. Exp. Clin. Endocrinol. Diab. 1997, 105: 213–217.

    Article  Google Scholar 

  19. Sumoski W., Baqurizo H., Rabinovitch A. Oxygen free radical scavengers protect rat islet cells from damage by cytokines. Diabetologia 1989, 32: 792–796.

    Article  CAS  PubMed  Google Scholar 

  20. Rabinovitch A., Suarez W.L., Thomas P.D., Strydnaka K., Simpson I. Cytotoxic effects of cytokines on rats islets: evidence for involvement of free radicals and lipid peroxydation. Diabetologia 1992, 35: 409–413.

    Article  CAS  PubMed  Google Scholar 

  21. Faure P., Corticceli P., Richard M.J., Arnaud J., Coudray C., Halimi S., Favier A., Roussel A.M. Lipid peroxydation and trace element status in diabetic ketotic patients: influence of insulin therapy. Clin. Chem. 1993, 39: 789–793.

    CAS  PubMed  Google Scholar 

  22. Zozulinska M., Zawilska K. Evaluation of platelet malondialdehyde and 12-hydroperoxyeicosatetranoic acid in type I and type II diabetic patients with ketoacidosis and after clinical complications. Pol. Arch. Med. Wewn. 1991, 85: 286–293.

    CAS  PubMed  Google Scholar 

  23. Olejnicka B.T., Dalen H., Brunk U.T. Minute oxidative stress is sufficient to induce apoptotic death of NIT-1 insulinoma cells. APMIS 1999, 107: 747–750.

    Article  CAS  PubMed  Google Scholar 

  24. Foster D., McGarry J. The metabolic derangements and treatment of diabetic ketoacidosis. N. Engl. J. Med. 1983, 309: 159–163.

    Article  CAS  PubMed  Google Scholar 

  25. Levi E., Fadda G., Ozbasli C., Massry S. Evolution of metabolic and functional derangements of pancreatic islets in phosphate depletion. Endocrinology 1992, 131: 2182–2185.

    CAS  PubMed  Google Scholar 

  26. Glinn M., Ni B., Irwin R.P., Kelley S.W., Lin S.Z., Paul S.M. Inorganic Pi increases neuronal survival in the acute early phase following excito-toxic/oxidative insults. J. Neurochem. 1998, 70: 1850–1855.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-C. Vantyghem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vantyghem, MC., Balduyck, M., Zerimech, F. et al. Oxidative markers in diabetic ketoacidosis. J Endocrinol Invest 23, 732–736 (2000). https://doi.org/10.1007/BF03345062

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03345062

Key-words

Navigation