Skip to main content
Log in

Farmaci che interferiscono con la funzione tiroidea

  • Published:
L’Endocrinologo Aims and scope

Riassunto

Numerosi farmaci sono capaci di interferire sulla funzione tiroidea, provocando veri e propri quadri disfunzionali oppure causando alterazioni nelle prove di laboratorio, senza alterare lo stato funzionale. Questo articolo passa in rassegna gli effetti di un gran numero di sostanze utilizzate nella terapia di numerose condizioni morbose, con particolare attenzione a quelle che sono capaci di provocare disfunzioni tiroidee, in genere limitate nel tempo, e talora stabili, come l’amiodarone (ipertiroidismo ed ipotiroidismo), il litio (ipotiroidismo e, di rado, ipertiroidismo) ovvero aumentato fabbisogno della dose sostitutiva della levo-tiroxina nell’ipotiroidismo per interferenze metaboliche (estrogeni, anti-convulsivanti) o per inibizione dell’assorbimento intestinale (sali di ferro, di calcio, resine, antiacidi). Tutti gli altri farmaci passati in rassegna esercitano modeste e transitorie interferenze sulla misurazione degli ormoni circolanti e del TSH senza alterare in modo significativo la loro interpretazione. I numerosi farmaci interferenti esercitano i loro effetti a differenti livelli: dalla secrezione dell’ormone tireotropo, alla sintesi ed alla secrezione degli ormoni tiroidei fino al loro trasporto e metabolismo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliografia

  1. Martino E, Balzano S, Sica V, Mastinu G, Bartalena L, Lattanzi V, Roti E. Guida dei farmaci e delle funzioni interferenti sulla funzione tiroidea. J Endocrinol Invest 12(Suppl 5): 1, 1989.

    Google Scholar 

  2. Surks MI, Sievert R. Drugs and thyroid function. N Engl J Med 333: 1688, 1995.

    Article  PubMed  CAS  Google Scholar 

  3. Green WL Antithyroid compounds. In: Braverman LE, Utiger RD (Eds), The thyroid: a fundamental and clinical text. Lippincott, Philadelphia, 1996, p 266.

    Google Scholar 

  4. Meier CA, Burger AG. Effects of pharmacologic agents on thyroid hormone homeostasis. In: Braverman LE, Utiger RD (Eds), The thyroid: a fundamental and clinical text. Lippincott, Philadelphia, 1996, p 276.

    Google Scholar 

  5. Amberson J, Drinka PJ. Medication and low serum thyroxine values in nursing home residents. South Med J 91: 437, 1998.

    Article  PubMed  CAS  Google Scholar 

  6. Shotliff K, Blight A, Mukherjee D. Incorrect diagnosis of thyroid disease by junior doctors. Br J Clin Pract 50: 76, 1996.

    PubMed  CAS  Google Scholar 

  7. Bogazzi F, Bartalena L, Gasperi M, Braverman LE, Martino E. The various effects of amiodarone on thyroid function. Thyroid 11: 511, 2001.

    Article  PubMed  CAS  Google Scholar 

  8. Bourdoux PP, Ermans AM, Mukalay WA, Mukalay A, Filetti S, Vigneri R. Iodine-induced thyrotoxicosis in Kivu, Zaire. Lancet 347: 552, 1996.

    Article  PubMed  CAS  Google Scholar 

  9. Lazarus J. The effects of lithium therapy on thyroid and thyrotropin-releasing hormone. Thyroid 8: 909, 1998.

    Article  PubMed  CAS  Google Scholar 

  10. Bocchetta A, Mossa P, Velluzzi F, Mariotti S, Zompo MD, Loviselli A. Ten year follow-up of thyroid function in lithium patients. J Clin Psychopharmacol 21: 594, 2001.

    Article  PubMed  CAS  Google Scholar 

  11. Barclay ML., Brownlie BE, Turner JG, Wells JE. Lithium associated thyrotoxicosis: a report of 14 cases, with statistical analysis of incidence. Clin Endocrinol (Oxf) 40: 759, 1994.

    Article  CAS  Google Scholar 

  12. de Metz J, Romjin JA, Endert E, Corssmit EP, Sauerwein HP. Admistration of interferon-gamma in healthy subjects does not modulate thyroid hormone metabolism. Thyroid: 10: 87, 2000.

    Article  PubMed  Google Scholar 

  13. Witzke O, Winterhagen T, Saller B, Roggenbuck U, Lehr I, Philipp T, Mann K, Reinhardt W. Transient stimulatory effects on pituitary-thyroid axis in patients treated with interleukin-2. Thyroid 11: 665, 2001.

    Article  PubMed  CAS  Google Scholar 

  14. Ward DL, Bing-You RG. Autoimmune thyroid dysfunction induced by interferon-alpha treatment for chronic hepatitis C: screening and monitoring recommendations. Endocr Pract 7: 52, 2001.

    Article  PubMed  CAS  Google Scholar 

  15. Corssmit EPM, Heylingenberg R, Endert E, Sauerwein HP, Romjin JA. Acute effects of interferon-α administration on thyroid hormone metabolism in healthy men. J Clin Endocrinol Metab 80: 3140, 1995.

    PubMed  CAS  Google Scholar 

  16. Durelli L, Ferrero B, Oggero A, Verdun E, Ghezzi A, Montanari E, Zaffaroni M. Thyroid function and autoimmunity during interferon beta-1b treatment: a multicenter prospective study. J Clin Endocrinol Metab 86: 3525, 2001.

    PubMed  CAS  Google Scholar 

  17. Gupta A, Eggo MC, Uetrecht JP, Cribb AE, Daneman D, Rieder MJ, Shear NH, Cannon M, Spielberg SP. Drug-induced hypothyroidism: the thyroid as a target organ in hypersensitivity reactions to anti-convulsivants and sulphonamides. Clin Pharmacol Ther 51: 56, 1992.

    Article  PubMed  CAS  Google Scholar 

  18. Singh N, Singh PN, Hershman J. Effect of calcium carbonate on the absorption of levothyroxine. JAMA 283: 2822, 2000.

    Article  PubMed  CAS  Google Scholar 

  19. Jonderko G, Marcisz C, Kotulska A. Effect of cimetidine on radioisotope-labeled thyroxine absorption from the digestive tract. Pol Arch Med Wewn 78: 89, 1988.

    Google Scholar 

  20. Chik CL, Wallace C. Profound reduction in thyroxine efficacy by omeprazole in a hypothyroid patient on ferrous gluconate. Thyroid 3 (Suppl): T–32, 1993 (Abstract 46).

    Google Scholar 

  21. Benvenga S, Li Calzi L, Robbins J. Effect of free fatty acids and nonlipid inhibitors of thyroid hormone binding in the immunoradiometric assay of thyroxine-binding globulin. Clin Chem 33: 1752, 1987.

    PubMed  CAS  Google Scholar 

  22. Wang R, Nelson JC, Wilcox RB. Salsalate and salicylate binding to and their displacement of thyroxine from thyroxine-binding globulin, transthyrin and albumin. Thyroid 9: 359, 1999.

    Article  PubMed  CAS  Google Scholar 

  23. Hawkins RC. Furosemide interference in newer free thyroxine assays. Clin Chem 44: 2550, 1998.

    CAS  Google Scholar 

  24. Lim CF, Stockigt JR, Curtis AJ, Wynne KN, Barlow JW, Topliss DJ. Influence of a naturally occurring furanoid acid on the drug competitors for specific thyroxine binding in serum. Metabolism 42: 1468, 1993.

    Article  PubMed  CAS  Google Scholar 

  25. Laji K, Rhidha B, John R, Lazarus J, Davies JS. Abnormal serum free thyroid hormone levels due to heparin administration. Q J Med 94: 471, 2001.

    Article  CAS  Google Scholar 

  26. Stevenson HP, Archbold GP, Johnston P, Young IS, Sheridan B. Misleading serum free thyroxine results during low molecular weight heparin treatment. Clin Chem 44: 1002, 1998.

    PubMed  CAS  Google Scholar 

  27. Bishnoi A, Carlson HE, Gruber BL, Kaufman LD, Bock JL, Lidonnici K. Effects of commonly prescribed nonsteroidal antinflammatory agents on thyroid hormone measurements. Am J Med 96: 235, 1994.

    Article  PubMed  CAS  Google Scholar 

  28. Shulkin D, Olson BR, Levey GS. Thyrotoxic periodic paralysis in a Latin-American taking acetazolamide. Am J Med Sci 297: 337, 1989.

    Article  PubMed  CAS  Google Scholar 

  29. Costante G, Crupi D, Trimarchi F, Demeester-Mirkine N. Hypothyroidism induced by pregnancy in a patient submitted to suppressive L-thyroxine therapy. J Endocrinol Invest 10: 527, 1987.

    PubMed  CAS  Google Scholar 

  30. Arafah BM. Increased need for thyroxine in women with hypothyroidism during estrogen therapy. N Engl J Med 344: 1743, 2001.

    Article  PubMed  CAS  Google Scholar 

  31. Arafah BM. Decreased levothyroxine requirement in women with hypothyroidism during androgen therapy for breast cancer. Ann Intern Med 121: 247, 1994.

    Article  PubMed  CAS  Google Scholar 

  32. Dymling JF, Jeppsson S, Rannevik G. Effect of danazol on thyroid function in postmenopausal women. Acta Obstet Gynecol Scand 123 (Suppl): 137, 1984.

    Article  CAS  Google Scholar 

  33. Anker GB, Lonning PE, Aakvaag A, Lien EA. Thyroid function in postmenopausal breast cancer patients treated with tamoxifen. Scand J Clin Lab Invest 58: 103, 1998.

    Article  PubMed  CAS  Google Scholar 

  34. Mercado G, Adelstein DL, Saxton JP, Secic M, Larton MA, Lavertu P. Hypothyroidism: a frequent event after radiotherapy with chemotherapy for patients with head and neck carcinoma. Cancer 92: 2892, 2001.

    Article  PubMed  CAS  Google Scholar 

  35. Rasheed A, Tareen IA. Effects of heroin on thyroid function, cortisol and testosterone level in addicts. Pol J Pharmacol 47: 441, 1995.

    PubMed  CAS  Google Scholar 

  36. Brambilla F, Nobile P, Zanoboni A, Zanoboni-Muciaccia W, Meroni PL. Effects of chronic heroin addiction on pituitary thyroid function in man. J Endocrinol Invest 3: 251, 1980.

    PubMed  CAS  Google Scholar 

  37. Ilias I, Kakoulas I, Christakopoulou I, Katsadoros K. Thyroid function of former opioid addicts on naltrexone treatment. Acta Medica 44: 33, 2001.

    PubMed  CAS  Google Scholar 

  38. Jhaveri RC, Glass L, Evans HE, Dube SK, Rosenfeld W, Khan F, Salazar JD, Chandavasu O. Effects of methadone on thyroid function in mother, fetus, and newborn. Pediatrics 65: 557, 1980.

    PubMed  CAS  Google Scholar 

  39. Reinhardt W, Sauter V, Jockenhovel F, Kummer G, Uppenkamp M, Witzke O, Philipp T, Reinwein D, Mann K. Unique alterations of thyroid function parameters after IV administration of alkylating drugs cyclophoshamide and ifosfamide. Exp Clin Endocrinol Diabetes 107: 177, 1999.

    Article  PubMed  CAS  Google Scholar 

  40. Nolan SR, Self TH, Norwood JM. Interaction between rifampin and levothyroxine. South Med J 92: 529, 1999.

    Article  PubMed  CAS  Google Scholar 

  41. Harden CL. Therapeutic safety monitoring: what to look for and when to look for it. Epilepsia 41(Suppl 8): S37, 2000.

    Article  PubMed  CAS  Google Scholar 

  42. De Luca F, Arrigo T, Pandullo E, Siracusano MF, Benvenga S, Trimarchi F. Changes in thyroid function tests induced by 2 month carbamazepine treatment in L-thyroxine substituted hypothyroid children. Eur J Pediatr 145: 77, 1986.

    Article  PubMed  Google Scholar 

  43. Bocchetta A, Chillotti C, Severino G, Ardau R, Del Zompo M. Carbamazepine augmentation in lithium-refractory bipolar patients: a prospective study on long-term prophylactic effectiveness. J Clin Psychopharmacol 17: 92, 1997.

    Article  PubMed  CAS  Google Scholar 

  44. Verrotti A, Basciani F, Morresi S, Morgese G, Chiarelli F. Thyroid hormones in epileptic children receiving carbamazepine and valproic acid. Pediatr Neurol 25: 43, 2001.

    Article  PubMed  CAS  Google Scholar 

  45. Eiris-Punal J, Del Rio-Garma M, Del Rio-Garma MC, Lojo-Rocamonde S, Novo-Rodriguez I, Castro-Gago M. Long-term treatment of children with epilepsy with valproate or carbamazepine may cause subclinical hypothyroidism. Epilepsia 40: 1761, 1999.

    Article  PubMed  CAS  Google Scholar 

  46. Benvenga S, Lakshmanan M, Trimarchi F. Carnitine is a naturally occurring inhibitor of thyroid hormone nuclear uptake. Thyroid 10: 1055, 2000.

    Article  Google Scholar 

  47. Benvenga S, Ruggeri RM, Russo A, Lapa D, Campennì A, Trimarchi F. Usefulness of L-carnitine, a naturally occurring peripheral antagonist of thyroid hormone action, in iatrogenic hyperthyroidism: a randomized, double-blind, placebo-controlled clinical trial. J Clin Endocrinol Metab 86: 3579, 2001.

    Article  PubMed  CAS  Google Scholar 

  48. Kragie L, Doyle D. Benzodiazepines inhibit temperature-dependent L-125I triiodothyronine accumulation into human liver, human neuroblast, and rat pituitary cell lines. Endocrinology 130: 211, 1992.

    Google Scholar 

  49. Topliss DJ, Hamblin PS, Kolliniatis E, Lim CF, Stockigt JR. Furosemide, fenclofenac, diclofenac, mefenamic acid and meclofenamic acid inhibit specific T3 binding in isolated rat hepatic nuclei. J Endocrinol Invest 11: 355, 1988.

    PubMed  CAS  Google Scholar 

  50. Mann DN, Surks MI. 5,5’-diphenylhydantoin decreases specific 3,5,3’-tri-iodothyronine (T3) binding by rat hepatic T3 receptors. Endocrinology 112: 1723, 1983.

    Article  PubMed  CAS  Google Scholar 

  51. Verhoeven FA, Moerings EP, Lamers JM, Hennemann G, Visser TJ, Everts ME. Inhibitory effects of calcium channel blockers on thyroid hormone uptake in neonatal rat cardiomyocytes. Am J Physiol Heart Circ Physiol 281: H1985, 2001.

    PubMed  CAS  Google Scholar 

  52. Ribeiro CJ, Cavalieri RR, Lomli N, Ramhoui CM, Baxter JD, Scarschmidt BF. Thyroid hormone export regulates cellular hormone content and response. J Biol Chem 271: 17147, 1996.

    Article  PubMed  CAS  Google Scholar 

  53. Faglia G. The clinical impact of the thyrotropin-releasing hormone test. Thyroid 8: 903, 1998.

    Article  PubMed  CAS  Google Scholar 

  54. Kimura N, Arai K, Sahara Y, Suzuki H. Estradiol transcriptionally and postranscriptionally up-regulates thyrotropin-releasing hormone receptor messenger ribonuclei acid in rat pituitary cells. Endocrinology 134: 432, 1995.

    Google Scholar 

  55. Schomburg L, Bauer K. Regulation of the adenohypophyseal thyrotropin-releasing hormone-degrading ectoenzyme by estradiol. Endocrinology 138: 3587, 1997.

    PubMed  CAS  Google Scholar 

  56. Alen M, Rahkila P, Reinila M, Vihko R. Androgenic-anabolic steroid effects on serum thyroid, pituitary and steroid hormones in athletes. Am J Sports Med 15: 357, 1987.

    Article  PubMed  CAS  Google Scholar 

  57. Lee E, Chen P, Rao H, Lee J, Burnmeister LA. Effect of acute high dose dobutamine on serum thyrotropin. Clin Endocrinol (Oxf) 50: 487, 1999.

    Article  CAS  Google Scholar 

  58. Grunfeld G, Sherman BM, Cavalieri RR. The acute effects of human growth hormone administration on thyroid function in normal men. J Clin Endocrinol Metab 67: 1111, 1988.

    Article  PubMed  CAS  Google Scholar 

  59. McCowen KC, Garber JR, Spark R. Elevated serum thyrotropin in thyroxine treated patients with hypothyroidism given sertraline. N Engl J Med 337: 1010, 1997.

    Article  PubMed  CAS  Google Scholar 

  60. Morley EJ, Shafer RB, Elson MK, Slag MF, Raleigh MJ, Brammer GL, Yuwiler A, Hershman JM. Amphetamine-induced hyperthyroxinemia. Arch Intern Med 93: 707, 1982.

    Google Scholar 

  61. Perret G, Hugues JN, Louchahi M, Varoquaux O, Modigliani E. Effects of a short-term oral administration of cimetidine and ranitidine on the basal and thyrotropin-releasing hormone-stimulated concentrations of prolactin, thyrotropin and thyroid hormones in healthy volunteers. A double-blind cross-over study. Pharmacology 32: 101, 1986.

    Article  PubMed  CAS  Google Scholar 

  62. Hine KR, Harrop JS, Hopton MR, Holmes GK, Matthews HL. The effects of ranitidine on pituitary-thyroid function. Br J Clin Pharmacol 18: 608, 1984.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Sherman SI, Gopal J, Haugen BR, Chiu AC, Whaley K, Nowlakha P, Duvic M. Central hypothyroidism associated with retinoid X receptor-selective ligands. N Engl J Med 340: 1075, 1999

    Article  PubMed  CAS  Google Scholar 

  64. Faglia G, Ambrosi B, Beck-Peccoz P, Travaglini P, Ferrari C. The effect of teophilline on the plasma thyrotropin response to thyrotropin releasing factor in man. J Clin Endocrinol Metab 34: 906, 1972.

    Article  PubMed  CAS  Google Scholar 

  65. Smals AG, Kloppenberg PW, Hoefnagels WH, Drayer JI. Pituitary-thyroid function in spironolactone treated hypertensive women. Acta Endocrinol 90: 577, 1979.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Trimarchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trimarchi, F., Benvenga, S. Farmaci che interferiscono con la funzione tiroidea. L’Endocrinologo 3, 117–134 (2002). https://doi.org/10.1007/BF03344418

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03344418

Navigation