Skip to main content

Establishing body composition in obesity

Abstract

The field of human body composition research is reaching a mature stage in its development. Quantifying the main body components is integral to the study of growth, as the assessment of human physical characteristics is important both in anthropological and medical fields. This article will focus on body composition methodology. Specifically, our attention is aimed at estimates of body fatness. An overview is first provided of the five-level model of body composition as it relates to measures of fatness. We then provide general concepts related to techniques for estimating body composition. Finally, we briefly discuss the measurement of adipose tissue distribution.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Bray G.A. Contemporary Diagnosis and Management of Obesity. H.H.C. Newton, Pennsylvania, 1998.

    Google Scholar 

  2. 2.

    Heymsfield S.B., Allison D.B., Heshka S., Pierson R.N. Jr. Assessment of human body composition. In Allison D.B. (Ed.), Handbook of assessment methods for eating behaviors and weight-related problems. SAGE Publications, Thousand Oaks, California, 1995, p. 515.

    Google Scholar 

  3. 3.

    National Institute of Health. Clinical guidelines on the identification, evaluation and treatment of overweight and obesity in adults: the Evidence Report. Department of Health and Human Services, Bethesda, 1998.

    Google Scholar 

  4. 4.

    Wang Z.M., Pierson R.N. Jr., Heymsfield S.B. The five level model: a new approach to organizing body composition research. Am. J. Clin. Nutr. 1992, 56: 19–28.

    CAS  PubMed  Google Scholar 

  5. 5.

    Yasumura S., Wang J., Pierson R.N. Jr. (Eds). In vivo body composition studies. Ann. N.Y. Acad. Sci., vol. 904, 2000.

  6. 6.

    Roche A.F., Heymsfield S.B., Lohman T.G. (Eds.), Human body composition. Human Kinetics, Champaign, 1996.

    Google Scholar 

  7. 7.

    Heymsfield S.B., Wang Z.M., Baumgartner R.N., Ross R. Human body composition: advances in models and methods. Annu. Rev. Nutr. 1997; 17: 527–558.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Ellis K.J. Human body composition: in vivo methods. Physiol. Rev. 2000; 80: 649–680.

    CAS  PubMed  Google Scholar 

  9. 9.

    Pietrobelli A., Heymsfield S.B., Wang Z.M., Gallagher D. Multi-component body composition models: recent advances and future directions. Eur. J. Clin. Nutr. 2001, 55: 69–75.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Heymsfield S.B., Wang Z.M., Gallagher D., Pietrobelli A. Multicomponent models of body composition: an overview. In: Pierson R.N. Jr. (Ed.), Quality of the cell body mass. Serono Symposia USA. Springer-Verlag, New York, 2000, p. 33.

    Chapter  Google Scholar 

  11. 11.

    Pietrobelli A., Heo M., Faith M.S. Assessment of childhood and adolescents body composition: a practical guide. In Dasgupta P., Hauspie R. (Eds.), Perspectives in human growth, development and maturation. Kluwer Academic Publishers, The Netherlands, 2001, p. 67.

    Chapter  Google Scholar 

  12. 12.

    Pietrobelli A., Wang Z.M., Heymsfield S.B. Techniques used in measuring human body composition. Curr. Opin. Clin. Nutr. Metab. Care 1998, 1: 439–448.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Pierson R.N. Jr. (Ed.), Quality of the cell body mass. Serono Symposia USA. Springer-Verlag, New York, 2000.

    Google Scholar 

  14. 14.

    Pierson R.N. Jr., Wang J., Heymsfield S.B., Dilmanian F.D., Weber D.A. High precision in vivo neutron activation analysis: a new era for compartmental analysis on body composition. In: Yasumura S., Harrison J., McNeil G.G., Woodhead A.D., Dilmanian F.D. (Eds.), In vivo body composition studies. Plenum Press, New York, 1990, p. 317.

    Chapter  Google Scholar 

  15. 15.

    Heymsfield S.B., Waki M., Kehayias J.J. et al. Chemical and elemental analysis of humans in vivo using improved body composition models. Am. J. Physiol. 1991, 261: E190–E198.

    CAS  PubMed  Google Scholar 

  16. 16.

    Kehayias J.J., Heymsfield S.B., LoMonte A.F., Wang J., Pierson R.N. Jr. In vivo determination of body fat by measuring total body carbon. Am. J. Clin. Nutr. 1991, 53: 1339–1344.

    CAS  PubMed  Google Scholar 

  17. 17.

    Snyder W.M., Cook M.J., Nasset E.S., Karhausen L.R., Howells G.P., Tipton I.H. Report of the task group on reference man. Pergamon Press, Oxford, 1975.

    Google Scholar 

  18. 18.

    Comizio R., Pietrobelli A., Tan Y.X. et al. Total body lipid and triglyceride response to energy deficit: relevance to body composition models. Am. J. Physiol. 1998, 274: E860–E866.

    CAS  PubMed  Google Scholar 

  19. 19.

    Behnke A.R., Feen B.G., Welham W.C. The specific gravity of healthy men. JAMA 1942, 118: 495–498.

    Article  Google Scholar 

  20. 20.

    Moore F.D., Oleson K.H., McMurray J.D., Parker H.V., Ball M.R. The body cell mass and its supporting environment. Saunders Publishing, Philadelphia, 1963.

    Google Scholar 

  21. 21.

    Hoffman J.G., Hempelmann L.H. Estimation of whole-body radiation doses in accidental fission bursts. Am. J. Roentgenol. 1957, 77: 144–160.

    Google Scholar 

  22. 22.

    Anderson J., Osborn S.B., Tomlinson R.W.S. et al. Neutronactivation analysis in man in vivo. A new technique in medical analysis. Lancet 1964, 2: 1201–1205.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Ryde S.J.S. In vivo neutron activation analysis. In Pierson RN Jr. (Ed.), Quality of the cell body mass. Serono Symposia USA. Springer-Verlag, New York, 2000, p. 103.

    Chapter  Google Scholar 

  24. 24.

    Ellis K.J. Whole body counting and neutron activation analysis. In: Roche A.F., Heymsfield S.B., Lohman T.G. (Eds.), Human body composition. Human Kinetics, Champaign, 1996, p. 45.

    Google Scholar 

  25. 25.

    Forbes G.B. Human body composition. Springer-Verlag, New York, 1987.

    Book  Google Scholar 

  26. 26.

    Schoeller D.A., van Santen E., Peterson D.W., Diets W., Jaspan J., Klein P.D. Total body water measurement in humans with 18O and 2H labeled water. Am. J. Clin. Nutr. 1980, 33: 2686–2693.

    CAS  PubMed  Google Scholar 

  27. 27.

    Schoeller D.A.. Hydrometry. In: Roche A.F., Heymsfield S.B., Lohman T.G. (Eds.), Human body composition. Human Kinetics, Champaign, 1996, p. 25.

    Google Scholar 

  28. 28.

    Yanovski S.Z., Heymsfield S.B., Lukaski H.C., Bioelectrical impedance analysis. Am. J. Clin. Nutr. 1996, 64 (S3): 387–532.

    Google Scholar 

  29. 29.

    Baumgartner R.N. Electrical impedance and total body electrical conductivity. In: Roche A.F., Heymsfield S.B., Lohman T.G. (Eds.), Human body composition. Human Kinetics, Champaign, 1996, p. 79.

    Google Scholar 

  30. 30.

    Pietrobelli A., Morini P., Battistini N.C., Chiumello G., Nunez C., Heymsfield S.B. Appendicular skeletal muscle mass: prediction from multiple frequency segmental bioimpedance analysis. Eur. J. Clin. Nutr. 1998, 52: 507–511.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Pietrobelli A., Formica C., Wang Z.M., Heymsfield S.B. Dual energy X-ray Absorptiometry body composition model: review of physical concepts. Am. J. Physiol. 1996, 271: E941–E951.

    CAS  PubMed  Google Scholar 

  32. 32.

    Lohman T.G. Dual energy X-ray absorptiometry. In: Roche A.F., Heymsfield S.B., Lohman T.G. (Eds.), Human body composition. Human Kinetics, Champaign, 1996, p. 63.

    Google Scholar 

  33. 33.

    Pietrobelli A., Wang Z.M., Formica C., Heymsfield S.B. Dual energy X-ray Absorptiometry: fat estimation errors due to variation in soft tissue hydration. Am. J. Physiol. 1998, 274: E860–E866.

    PubMed  Google Scholar 

  34. 34.

    Despres J.P., Ross R., Lemieux S. Imaging techniques applied to the measurement of human body composition. In: Roche A.F., Heymsfield S.B., Lohman T.G. (Eds.), Human body composition. Human Kinetics, Champaign, 1996, p. 149.

    Google Scholar 

  35. 35.

    Roche A.F. Anthropometry and ultrasound. In: Roche A.F., Heymsfield S.B., Lohman T.G. (Eds.), Human body composition. Human Kinetics, Champaign, 1996, p. 167.

    Google Scholar 

  36. 36.

    Pi-Sunyer X.P. Obesity: criteria and classification. Proc. Nutr. Soc. 2000 59: 505–509.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Allison D.B., Zhu S.K., Plankey M., Faith M.S., Heo M. Differential association of body mass index and adiposity with all-cause mortality among men in the first and second National Health and Nutrition Examination Surveys (NHANES I and NHANES II) follow-up studies. Int. J. Obes. 2002, 26: 410–416.

    CAS  Article  Google Scholar 

  38. 38.

    Calle E.E., Thun M.J., Petrelli J.M., Rodriguez A., Heath C.W. Jr. Body mass index and mortality in a prospective cohort of U.S. adults. N. Engl. J. Med. 1999, 341: 1097–1105.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Cole T.J., Bellizzi M.C., Flegal K.M., Dietz W.H. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 2000, 320: 1240–1243.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  40. 40.

    Ellis K.J., Abrams S.A., Wong W.W. Monitoring childhood obesity: assessment of the weight/height2 index. Am. J. Epidemiol. 1999, 150: 939–946.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Pietrobelli A., Faith M.S., Allison D.B., Gallagher D., Chiumello G., Heymsfield S.B. Body mass index as a measure of adiposity among children and adolescent: a validation study. J. Pediatr. 1998, 132: 204–210.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Horswill C.A., Geesman R., Boileau R.A., Williams B.T., Layman D.K., Massey B.H. Total body electrical conductivity (TOBEC): relationship to estimates of muscle mass, fat-free weight, and lean body mass. Am. J. Clin. Nutr. 1989, 49: 593–598.

    Google Scholar 

  43. 43.

    Fogelholm M., van Marken Lichtenbelt W. Comparison of body composition methods: a literature analysis. Eur. J. Clin. Nutr. 1997, 51: 495–503.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Going S.B. Densitometry. In: Roche A.F., Heymsfield S.B., Lohman T.G. (Eds.), Human body composition. Human Kinetics, Champaign, 1996, p. 3.

    Google Scholar 

  45. 45.

    Nunez C., Kovera A., Pietrobelli A. et al. Body composition in children and adults by air displacement plethysmography. Eur. J. Clin. Nutr. 1999, 53: 382–387.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Deurenberg P. Methods for determining fat mass and fat distribution. Acta Pediatr. Suppl. 1992, 383: 53–57.

    CAS  Google Scholar 

  47. 47.

    Durning J.V.G.A., Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 17 to 72 years. Br. J. Nutr. 1974, 32: 77–97.

    Article  Google Scholar 

  48. 48.

    Poliot M.C., Despres J.P., Lemieux S., Moorjani S., Bouchard C., Tremblay A. Waist circumference and abdominal sagittal diameter: best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. Am. J. Cardiol. 1994, 73: 460–468.

    Article  Google Scholar 

  49. 49.

    Chan J.M., Rimm E.B., Colditz G.A., Stampfer M.J., Willett W.C. Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care 1994, 17: 961–969.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Angelo Pietrobelli.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pietrobelli, A., Heymsfield, S.B. Establishing body composition in obesity. J Endocrinol Invest 25, 884–892 (2002). https://doi.org/10.1007/BF03344052

Download citation

Key-words

  • Obesity
  • body composition
  • fat-free mass
  • adipose tissue