Skip to main content
Log in

Prevalence of thyroid diseases in patients with acromegaly: results of an Italian Multi-center Study

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Acromegaly is frequently associated with the presence of thyroid disorders, however the exact prevalence is still controversial. An Italian multicenter study was performed on 258 patients with active acromegaly (high levels of IGF-I and lack of suppression of serum GH levels below 2 μg/l after an OGTT). The control group was represented by 150 patients affected by non-functioning and PRL-secreting pituitary adenomas. Two hundred and two out of 258 acromegalic patients (78%) were affected by thyroid disorders with a significantly higher prevalence with respect to the control group (27%, p<0.0001). One hundred and three patients presented (39.9%) non-toxic nodular goiter, 46 (17.8%) non-toxic diffuse goiter, 37 (14.3%) toxic nodular goiter, 1 toxic diffuse goiter (0.4%), 12 (4.6%) Hashimoto’s thyroiditis, 3 (1.2%) thyroid cancer. Two patients presented a co-secreting TSH pituitary adenoma. Thirty-six patients had been previously treated for various thyroid abnormalities. Among the 222 acromegalic patients never treated for thyroid disorders thyroid ultrasonography was performed on 194 subjects. Thyroid volume in patients with thyroid abnormalities was 28±17.5 ml (median 23) while it was 10.8±3.6 ml (median 10) in patients without thyroid disorders (p<0.0001). Thyroid volume was correlated with the estimated duration of acromegaly (r=0.7, p<000.1), but not with age or with serum GH, IGF-I and TSH concentrations. Thyroid volume was higher in acromegalic patients than in the above control population (23.5±16.9 ml vs 13.9±12.8 ml, p<0.0001). In 62 acromegalic patients 101 fine-needle biopsies of thyroid nodules were performed; 7 nodules were suspicious and the patients were submitted to thyroid surgery: papillary thyroid carcinoma was found in 3 patients. In conclusion, in a large series of acromegalic patients an increased prevalence of thyroid disorders (78%), particularly non-toxic nodular goiter, has been observed. Thyroid volume, evaluated by ultrasonography, was correlated to the estimated duration of acromegaly. Finally, the prevalence of thyroid carcinoma was slightly increased than in the general population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nabarro J.D.N. Acromegaly. Clin. Endocrinol. (Oxf.) 1987, 26: 481–512.

    Article  CAS  Google Scholar 

  2. Miyakawa M., Saji M., Tsushima T., Wakai K., Shizume K. Thyroid volume and serum thyroglobulin levels in patients with acromegaly: correlation with plasma insulin-like growth factor I levels. J. Clin. Endocrinol. Metab. 1988, 67: 973–978.

    Article  CAS  PubMed  Google Scholar 

  3. Wuster C., Steger G., Schmelzle A., Gottswinter J., Minne H.W., Ziegler R. Increased incidence of euthyroid and hyperthyroid goiters independently of thyrotropin in patients with acromegaly. Horm. Metab. Res. 1991, 23: 131–134.

    Article  CAS  PubMed  Google Scholar 

  4. Arosio M., Macchelli S., Rossi C.M., et al. Effects of treatment with octreotide in acromegalic patients — A multicenter Italian study. Eur. J. Endocrinol. 1995, 133: 430–439.

    Article  CAS  PubMed  Google Scholar 

  5. Junik R., Sawicka J., Kozak W., Gembicki M. Thyroid volume and function in patients with acromegaly living in iodine deficient areas. J. Endocrinol. Invest. 1997, 20: 134–137.

    CAS  PubMed  Google Scholar 

  6. Cheung N.W., Boyages S.C. The thyroid gland in acromegaly: an ultrasonographic study. Clin. Endocrinol. (Oxf.) 1997, 46: 545–549.

    Article  CAS  Google Scholar 

  7. Kasagi K., Shimatsu A., Miyamoto S., Misaki T., Sakahara H., Konishi J. Goiter associated with acromegaly: sonographic and scintigraphic findings of the thyroid gland. Thyroid 1999, 9: 791–796.

    Article  CAS  PubMed  Google Scholar 

  8. Cannavò S., Squadrito S., Finocchiaro M.D., et al. Goiter and impairment of thyroid function in acromegalic patients: basal evaluation and follow-up. Horm. Metab. Res. 2000, 32: 190–195.

    Article  PubMed  Google Scholar 

  9. Aghini-Lombardi F., Antonangeli L., Martino E., et al. The spectrum of thyroid disorders in an iodine-deficient community: the Pescopagano survey. J. Clin. Endocrinol. Metab. 1999, 84: 561–566.

    CAS  PubMed  Google Scholar 

  10. Chen S., Lin H.D. Serum IGF-I and IGFBP-3 levels for the assessment of disease activity of acromegaly. J. Endocrinol. Invest. 1999, 22: 98–103.

    CAS  PubMed  Google Scholar 

  11. Colao A., Marzullo P., Ferone D., et al. Effectiveness and tolerability of slow release lanreotide treatment in active acromegaly. J. Endocrinol. Invest. 1999, 22: 40–47.

    CAS  PubMed  Google Scholar 

  12. Diez J.J., Iglesias P., Gomez-Pan A. Growth hormone responses to oral glucose and intravenous thyrotropin-releasing hormone in acromegalic patients treated by slow-release lanreotide. J. Endocrinol. Invest. 2001, 24: 303–309.

    CAS  PubMed  Google Scholar 

  13. Giustina A., Barkan A., Casanueva F.F., et al. Criteria for cure of acromegaly: a consensus statement. J. Clin. Endocrinol. Metab. 2000, 80: 526–529.

    Google Scholar 

  14. Brunn J., Blocjk U., Ruf J., Bos I., Kunze W.P., Scriba P.C. Volumetrie der Schilddrusennlappen mittels real-time-Sonographie. Dtsch. Med. Wochenschr. 1993, 287: 1206–1207.

    Google Scholar 

  15. Vitti P., Rago T., Mazzeo S., et al. Thyroid blood flow evaluation by color-flow doppler sonography distinguishes Graves’ disease from Hashimoto’s thyroiditis. J. Endocrinol. Invest. 1995, 18: 857–861.

    CAS  PubMed  Google Scholar 

  16. Martino E., Loviselli A., Velluzzi F., et al. Endemic goiter and thyroid function in Central-Southern Sardinia: report on an extensive epidemiological survey. J. Endocrinol. Invest. 1994, 17: 653–657.

    CAS  PubMed  Google Scholar 

  17. Schatz H., Freiberger R., Richter C., Wiss F., Weber K. Influence of thyroid-stimulating hormone, epidermal growth factor, and insulin-like growth factor I on growth of thyroid cells in vitro. In: Goretzki P.E., Roher H.D. (Eds.), Growth regulation of thyroid gland and thyroid tumors. Karger Press, Basel, 1989, pp. 88–97.

    Google Scholar 

  18. Roger P., Taton M., van Sande J., Dumont J. Mitogenic effects of thyrotropin and adenosine 3′5′-monophosphate in differentiated normal human thyroid cells in vitro. J. Clin. Endocrinol. Metab. 1988, 66: 1158–1165.

    Article  CAS  PubMed  Google Scholar 

  19. Isler M. Loss of mitotic response of the thyroid gland to TSH in hypophysectomized rats and its partial restoration by anterior and posterior pituitary hormones. Anat. Rec. 1974, 180: 369–376.

    Article  CAS  PubMed  Google Scholar 

  20. Cheung N.W., Lou J.C., Boyages S.C. Growth hormone does not increase thyroid size in the absence of thyrotropin: a study in adults with hypopituitarism. J. Clin. Endocrinol. Metab. 1996, 81: 1179–1183.

    CAS  PubMed  Google Scholar 

  21. Hofbauer L.C., Rafferzeder M., Janssen O.E., Gartner R. Insulin-like growth factor 1 messenger ribonucleic acid expression in porcine thyroid follicles is regulated by thyrotropin and iodine. Eur. J. Endocrinol. 1995, 132: 605–610.

    Article  CAS  PubMed  Google Scholar 

  22. Eggo M.C., King W.J., Black E.G., Sheppard M.C. Functional human thyroid cells and their insulin-like growth factor-binding proteins: regulation by thyrotropin cyclic 3′,5′ adenosine monophosphate, and growth factors. J. Clin. Endocrinol. Metab. 1996, 81: 3056–3062.

    CAS  PubMed  Google Scholar 

  23. Clark R. The somatogenic hormones and insulin-like growth factor-1: stimulators of lymphopoiesis and immune function. Endocr. Rev. 1997, 18: 157–179.

    Article  CAS  PubMed  Google Scholar 

  24. Derwhal M., Broecker M., Kraiem Z. Thyrotropin may not be the dominant growth factor in benign and malignant thyroid tumors. J. Clin. Endocrinol. Metab. 1999, 84: 829–834.

    Google Scholar 

  25. Paschke R., Fuehrer D., Holzapfel H.P. Identification of different thyrotropin receptor mutations in toxic multinodular goiter. J. Endocrinol. Invest. 1996, 19: 28.

    Google Scholar 

  26. Tonacchera M., Chiovato L., Pinchera A., et al. Hyperfunctioning thyroid nodules in toxic multinodular goiter share activating thyrotropin receptor mutations with solitary toxic adenoma. J. Clin. Endocrinol. Metab. 1998, 83: 492–498.

    CAS  PubMed  Google Scholar 

  27. Spada A., Arosio M., Bochicchio D., et al. Clinical, biochemical, and morphological correlates in patients bearing growth hormone-secreting pituitary tumors with or without constitutively active adenylyl cyclase. J. Clin. Endocrinol. Metab. 1990, 71: 1421–1426.

    Article  CAS  PubMed  Google Scholar 

  28. Fenzi G.F., Giani C., Ceccarelli P., et al. Role of autoimmune and familial factors in goiter prevalence. Studies performed in a moderately endemic area. J. Endocrinol. Invest. 1986, 9: 161–164.

    CAS  PubMed  Google Scholar 

  29. Mariotti S., Sansoni P., Barbesino G., et al. Thyroid and other organ-specific autoantibodies in healthy centenarians. Lancet 1992, 339: 1506–1508.

    Article  CAS  PubMed  Google Scholar 

  30. Mazzaferri E. Management of a solitary thyroid nodule. N. Engl. J. Med. 1993, 328: 553–556.

    Article  CAS  PubMed  Google Scholar 

  31. Ezzat S., Melmed S. Are patients with acromegaly at increased risk for neoplasia? J. Clin. Endocrinol. Metab. 1991, 72: 245–249.

    Article  CAS  PubMed  Google Scholar 

  32. Barzilay J., Heatley G.J., Cushing G.W. Benign and malignant tumors in patients with acromegaly. Arch. Intern. Med. 1991, 151: 1629–1632.

    Article  CAS  PubMed  Google Scholar 

  33. Cheung N.W., Boyages S.C. Increased incidence of neoplasia in females with acromegaly. Clin. Endocrinol. (Oxf.) 1997, 47: 323–327.

    Article  CAS  Google Scholar 

  34. Balkany C., Cushing G.W. An association between acromegaly a nd thyroid carcinoma. Thyroid 1995, 5: 47–50.

    Article  CAS  PubMed  Google Scholar 

  35. Yashiro T., Ohba Y., Murakami H., et al. Expression of insulin-like growth factor receptors in primary human thyroid neoplasms. Acta Endocrinol. (Copenh.) 1989, 121: 112–120.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to E. Martino.

Additional information

Acromegaly Study Group of the Italian Society of Endocrinology: Department of Internal Medicine, Division of Endocrinology, University of Turin (E. Ghigo, E. Ciccarelli, P. Razzore); Turin Orbassano (A. Angeli, M. Terzolo); Department of Clinical Sciences, Division of Endocrinology, La Sapienza University, Rome (G. Tamburrano); Ospedale Niguarda, Division of Endocrinology, Milan (R. Cozzi); Department of Internal Medicine, University of Modena and Reggio Emilia (A. Velardo) and Ospedale Bentivoglio, Bologna (G. Meringolo); Department of Endocrinology, University of Pisa (I. Lupi, M. Genovesi), Italy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gasperi, M., Martino, E., Manetti, L. et al. Prevalence of thyroid diseases in patients with acromegaly: results of an Italian Multi-center Study. J Endocrinol Invest 25, 240–245 (2002). https://doi.org/10.1007/BF03343997

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03343997

Key-words

Navigation