Skip to main content
Log in

Congenital adrenal hyperplasia: Transition from childhood to adulthood

  • Review Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Congenital adrenal hyperplasia (CAH) is a group of disorders caused by inborn errors of steroid metabolism. The most common form owing to 21-hydroxylase deficiency (CAH-21OHD) is present in about 1:10,000–1:15,000 live births worldwide. In its classic salt-wasting form (∼66–75% of cases) patients may suffer potentially lethal adrenal insufficiency. Non-saltwasting forms of CAH-21OHD are recognized by genital ambiguity in affected females, and by signs of androgen excess in later childhood in males. Non-classic CAH-21OHD may be detected in up to 1–3% of certain populations, and is often mistaken for idiopathic precocious pubarche in children or polycystic ovary syndrome in young women. This chapter will address issues relating to transition of CAH care from the pediatric to the adult endocrinologist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Merke D.P., Chrousos G.P., Eisenhofer G., Weise M., Keil M.F., Rogol A.D., Van Wyk J.J., Bornstein S.R. Adrenomedullary dysplasia and hypofunction in patients with classic 21-hydroxylase deficiency. N. Engl. J. Med. 2000, 343: 1362–1368.

    Article  CAS  PubMed  Google Scholar 

  2. Wilson R.C., Mercado A.B., Cheng K.C., New M.I. Steroid 21-hydroxylase deficiency: genotype may not predict phenotype. J. Clin. Endocrinol. Metab. 1995, 80: 2322–2329.

    CAS  PubMed  Google Scholar 

  3. Thilen A., Woods K.A., Perry L.A., Savage M.O., Wedell A., Ritzen E.M. Early growth is not increased in untreated moderately severe 21-hydroxylase deficiency Acta Paediatr. 1995, 84: 894–898.

    Article  CAS  PubMed  Google Scholar 

  4. Speiser P.W., Dupont B., Rubinstein P., Piazza A., Kastelan A., New M.I. High frequency of nonclassical steroid 21-hydroxylase deficiency. Am. J. Hum. Genet. 1985, 37: 650–667.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Speiser P.W., New M.I., White P.C. Molecular genetic analysis of nonclassic steroid 21-hydroxylase deficiency associated with HLA-B14, DR1. N. Engl. J. Med. 1988, 319: 19–23.

    Article  CAS  PubMed  Google Scholar 

  6. Kohn B., Levine L.S., Pollack M.S., Pang S., Lorenzen F., Levy D., Lerner A.J., Rondanini G.F., Dupont B., New M.I. Late-onset steroid 21-hydroxylase deficiency: a variant of classical congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 1982, 55: 817–827.

    Article  CAS  PubMed  Google Scholar 

  7. Moran C., Azziz R., Carmina E., Dewailly D., Fruzzetti F., Ibanez L., Knochenhauer E.S., Marcondes J.A., Mendonca B.B., Pignatelli D., Pugeat M., Rohmer V., Speiser P.W., Witchel S.F. 21-Hydroxylase-deficient nonclassic adrenal hyperplasia is a progressive disorder: A multicenter study. Am. J. Obstet. Gynecol. 2000, 183: 1468–1474.

    Article  CAS  PubMed  Google Scholar 

  8. Eugster E.A., Dimeglio L.A., Wright J.C., Freidenberg G.R., Seshadri R., Pescovitz O.H. Height outcome in congenital adrenal hyperplasia caused by 21-hydroxylase deficiency: A metaanalysis. J. Pediatr. 2001, 138: 26–32.

    Article  CAS  PubMed  Google Scholar 

  9. Huizenga N.A., Koper J.W., De Lange P., Pols H.A., Stolk R.P., Burger H., Grobbee D.E., Brinkmann A.O., De Jong F.H., Lamberts S.W. A polymorphism in the glucocorticoid receptor gene may be associated with and increased sensitivity to glucocorticoids in vivo. J. Clin. Endocrinol. Metab. 1998, 83: 144–151.

    CAS  PubMed  Google Scholar 

  10. Merke D.P., Keil M.F., Jones J.V., Fields J., Hill S., Cutler G.B. Jr. Flutamide, testolactone, and reduced hydrocortisone dose maintain normal growth velocity and bone maturation despite elevated androgen levels in children with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 2000, 85: 1114–1120.

    Article  CAS  PubMed  Google Scholar 

  11. New M.I., Gertner J.M., Speiser P.W., del Balzo P. Growth and final height in classical and nonclassical 21-hydroxylase deficiency. Acta Paediatr. Jpn. 1988, 30 (Suppl.): 79–88.

    PubMed  Google Scholar 

  12. Cameron F.J., Tebbutt N., Montalto J., Yong A.B., Zacharin M., Best J.D., Warne G.L. Endocrinology and auxology of sibships with nonclassical congenital adrenal hyperplasia. Arch. Dis. Child. 1996, 74: 406–411.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Berenbaum S.A., Duck S.C., Bryk K. Behavioral effects of prenatal versus postnatal androgen excess in children with 21-hydroxylase-deficient congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 2000, 85: 727–733.

    CAS  PubMed  Google Scholar 

  14. Dittmann R.W., Kappes M.E., Kappes M.H. Sexual behavior in adolescent and adult females with congenital adrenal hyperplasia. Psychoneuroendocrinology 1992, 17: 153–170.

    Article  CAS  PubMed  Google Scholar 

  15. Kuhnle U., Bullinger M., Schwarz H.P. The quality of life in adult female patients with congenital adrenal hyperplasia: a comprehensive study of the impact of genital malformations and chronic disease on female patients life. Eur. J. Pediatr. 1995, 154: 708–716.

    Article  CAS  PubMed  Google Scholar 

  16. Meyer-Bahlburg H.F., Gruen R.S., New M.I., Bell J.J., Morishima A., Shimshi M., Bueno Y., Vargas I., Baker S.W. Gender change from female to male in classical congenital adrenal hyperplasia. Horm. Behav. 1996, 30: 319–332.

    Article  CAS  PubMed  Google Scholar 

  17. Berenbaum S.A. Cognitive function in congenital adrenal hyperplasia. Endocrinol. Metab. Clin. North Am. 2001, 30: 173–192.

    Article  CAS  PubMed  Google Scholar 

  18. Barnes R.B., Rosenfield R.L., Ehrmann D.A., Cara J.F., Cuttler L., Levitsky L.L., Rosenthal I.M. Ovarian hyperandrogynism as a result of congenital adrenal virilizing disorders: evidence for perinatal masculinization of neuroendocrine function in women. J. Clin. Endocrinol. Metab. 1994, 79: 1328–1333.

    CAS  PubMed  Google Scholar 

  19. Helleday J., Siwers B., Ritzen E.M., Carlstrom K. Subnormal androgen and elevated progesterone levels in women treated for congenital virilizing 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 1993, 76: 933–936.

    CAS  PubMed  Google Scholar 

  20. Speiser P.W., Serrat J., New M.I., Gertner J.M. Insulin insensitivity in adrenal hyperplasia due to nonclassical steroid 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 1992, 75: 1421–1424.

    CAS  PubMed  Google Scholar 

  21. Mather K.J., Kwan F., Corenblum B. Hyperinsulinemia in polycystic ovary syndrome correlates with increased cardiovascular risk independent of obesity. Fertil. Steril. 2000, 73: 150–156.

    Article  CAS  PubMed  Google Scholar 

  22. Ibanez L., Potau N., Chacon P., Pascual C., Carrascosa A. Hyperinsulinaemia, dyslipaemia and cardiovascular risk in girls with a history of premature pubarche. Diabetologia 1998, 41: 1057–1063.

    Article  CAS  PubMed  Google Scholar 

  23. Bonaccorsi A.C., Adler I., Figueiredo J.G. Male infertility due to congenital adrenal hyperplasia: testicular biopsy findings, hormonal evaluation, and therapeutic results in three patients. Fertil. Steril. 1987, 47: 664–670.

    CAS  PubMed  Google Scholar 

  24. Holmes-Walker D.J., Conway G.S., Honour J.W., Rumsby G., Jacobs H.S. Menstrual disturbance and hypersecretion of progesterone in women with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Clin. Endocrinol. (Oxf.) 1995, 43: 291–296.

    Article  CAS  Google Scholar 

  25. Van Wyk J.J., Gunther D.F., Ritzen E.M., Wedell A., Cutler G.B. Jr., Migeon C.J., New M.I. The use of adrenalectomy as a treatment for congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 1996, 81: 3180–3190.

    PubMed  Google Scholar 

  26. Imperato-McGinley J., Binienda Z., Gedney J., Vaughan E. Jr. Nipple differentiation in fetal male rats treated with an inhibitor of the enzyme 5 alpha-reductase: definition of a selective role for dihydrotestosterone. Endocrinology 1986, 118: 132–137.

    Article  CAS  PubMed  Google Scholar 

  27. Lo J.C., Schwitzgebel V.M., Tyrrell J.B., Fitzgerald P.A., Kaplan S.L., Conte F.A., Grumbach M.M. Normal female infants born of mothers with classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 1999, 84: 930–936.

    CAS  PubMed  Google Scholar 

  28. Feldman S., Billaud L., Thalabard J.C., Raux-Demay M.C., Mowszowicz I., Kuttenn F., Mauvais-Jarvis P. Fertility in women with late-onset adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 1992, 74: 635–639.

    CAS  PubMed  Google Scholar 

  29. Urban M.D., Lee P.A., Migeon C.J. Adult height and fertility in men with congenital virilizing adrenal hyperplasia. N. Engl. J. Med. 1978, 299: 1392–1396.

    Article  CAS  PubMed  Google Scholar 

  30. Prader A., Zachmann M., Illig R. Fertility in adult males with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Acta Endocrinol. 1973, 177 (Suppl.): 57.

    Google Scholar 

  31. Willi U., Atares M., Prader A., Zachmann M. Testicular adrenal-like tissue (TALT) in congenital adrenal hyperplasia: detection by ultrasonography. Pediatr. Radiol. 1991, 21: 284–287.

    Article  CAS  PubMed  Google Scholar 

  32. Avila N.A., Shawker T.S., Jones J.V., Cutler G.B. Jr., Merke D.P. Testicular adrenal rest tissue in congenital adrenal hyperplasia: serial sonographic and clinical findings. AJR. Am. J. Roentgenol. 1999, 172: 1235–1238.

    Article  CAS  PubMed  Google Scholar 

  33. Vanzulli A., DelMaschio A., Paesano P., Braggion F., Livieri C., Angeli E., Tomasi G., Gatti C., Severi F., Chiumello G. Testicular masses in association with adrenogenital syndrome: US findings. Radiology 1992, 183: 425–429.

    CAS  PubMed  Google Scholar 

  34. Srikanth M.S., West B.R., Ishitani M., Isaacs H. Jr., Applebaum H., Costin G. Benign testicular tumors in children with congenital adrenal hyperplasia. J. Pediatr. Surg. 1992, 27: 639–641.

    Article  CAS  PubMed  Google Scholar 

  35. Walker B.R., Skoog S.J., Winslow B.H., Canning D.A., Tank E.S. Testis sparing surgery for steroid unresponsive testicular tumors of the adrenogenital syndrome. J. Urol. 1997, 157: 1460–1463.

    Article  CAS  PubMed  Google Scholar 

  36. Al-Alwan I., Navarro O., Daneman D., Daneman A. Clinical utility of adrenal ultrasonography in the diagnosis of congenital adrenal hyperplasia. J. Pediatr. 1999, 135: 71–75.

    Article  CAS  PubMed  Google Scholar 

  37. Jaresch S., Kornely E., Kley H.K., Schlaghecke R. Adrenal incidentaloma and patients with homozygous or heterozygous congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 1992, 74: 685–689.

    CAS  PubMed  Google Scholar 

  38. Ravichandran R., Lafferty F., McGinniss M.J., Taylor H.C. Congenital adrenal hyperplasia presenting as massive adrenal incidentalomas in the sixth decade of life: report of two patients with 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 1996, 81: 1776–1779.

    CAS  PubMed  Google Scholar 

  39. Bauman A., Bauman C.G. Virilizing adrenocortical carcinoma. Development in a patient with salt-losing congenital adrenal hyperplasia. JAMA 1982, 248: 3140–3141.

    Article  CAS  PubMed  Google Scholar 

  40. Lightner E.S., Levine L.S. The adrenal incidentaloma. A pediatric perspective. Am. J. Dis. Child. 1993, 147: 1274–1276.

    Article  CAS  PubMed  Google Scholar 

  41. Kerrigan J.R., Veldhuis J.D., Leyo S.A., Iranmanesh A., Rogol A.D. Estimation of daily cortisol production and clearance rates in normal pubertal males by deconvolution analysis. J. Clin. Endocrinol. Metab. 1993, 76: 1505–1510.

    CAS  PubMed  Google Scholar 

  42. Lo J.C., Grumbach M. Pregnancy outcomes in women with congenital virilizing adrenal hyperplasia. Endocrinol. Metab. Clin. North Am. 2001, 30207–229

    Article  CAS  PubMed  Google Scholar 

  43. Seckl J.R., Miller W.L. How safe is long-term prenatal glucocorticoid treatment? JAMA 1997, 277: 1077–1079.

    Article  CAS  PubMed  Google Scholar 

  44. New M.I. Prenatal treatment of congenital adrenal hyperplasia: The United States experience. Endocrinol. Metab. Clin. North Am. 2001, 30: 1–13.

    Article  CAS  PubMed  Google Scholar 

  45. Bode H.H., Rivkees S.A., Cowley D.M., Pardy K., Johnson S. Home monitoring of 17 hydroxyprogesterone levels in congenital adrenal hyperplasia with filter paper blood samples. J. Pediatr. 1999, 134: 185–189.

    Article  CAS  PubMed  Google Scholar 

  46. Lamberts S.W., Bruining H.A., de Jong F.H. Corticosteroid therapy in severe illness. N. Engl. J. Med. 1997, 337: 1285–1292.

    Article  CAS  PubMed  Google Scholar 

  47. Zarkovic M., Ciric J., Stojanovic M., Penezic Z., Trbojevic B., Drezgic M., Nesovic M. Optimizing the diagnostic criteria for standard (250 μg) and low dose (1 μg) adrenocorticotropin tests in the assessment of adrenal function. J. Clin. Endocrinol. Metab. 1999, 84: 3170–3173.

    CAS  PubMed  Google Scholar 

  48. Speiser P.W., Agdere L., Ueshiba H., White P.C., New M.I. Aldosterone synthesis in salt-wasting congenital adrenal hyperplasia with complete absence of adrenal 21-hydroxylase. N. Engl. J. Med. 1991, 324: 145–149.

    Article  CAS  PubMed  Google Scholar 

  49. Rosler A., Levine L.S., Schneider B., Novogroder M., New M.I. The interrelationship of sodium balance, plasma renin activity and ACTH in congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 1977, 45: 500–512.

    Article  CAS  PubMed  Google Scholar 

  50. Reiner W.G. Assignment of sex in neonates with ambiguous genitalia. Curr. Opin. Pediatr. 1999, 11: 363–365.

    Article  CAS  PubMed  Google Scholar 

  51. Schnitzer J.J., Donahoe P.K. Surgical treatment of congenital adrenal hyperplasia. Endocrinol. Metab. Clin. North Am. 2001, 30: 137–154

    Article  CAS  PubMed  Google Scholar 

  52. Cargill M., Altshuler D., Ireland J., Sklar P., Ardlie K., Patil N., Shaw N., Lane C.R., Lim E.P., Kalyanaraman N., Nemesh J., Ziaugra L., Friedland L., Rolfe A., Warrington J., Lipshutz R., Daley G.Q., Lander E.S. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat. Genet. 1999, 22: 231–238.

    Article  CAS  PubMed  Google Scholar 

  53. White P.C., Vitek A., Dupont B., New M.I. Characterization of frequent deletions causing steroid 21-hydroxylase deficiency. Proc. Natl. Acad. Sci. USA 1988, 85: 4436–4440.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Higashi Y., Tanae A., Inoue H., Hiromasa T., Fujii-Kuriyama Y. Aberrant splicing and missense mutations cause steroid 21-hydroxylase [P-450(C21)] deficiency in humans: possible gene conversion products. Proc. Natl. Acad. Sci. USA 1988, 85: 7486–7490.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. White P.C., Speiser P.W. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Endocr. Rev. 2000, 21: 245–291.

    CAS  PubMed  Google Scholar 

  56. Amor M., Parker K.L., Globerman H., New M.I., White P.C. Mutation in the CYP21B gene (Ile-172—Asn) causes steroid 21-hydroxylase deficiency. Proc. Natl. Acad. Sci. USA 1988, 85: 1600–1604.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Tusie-Luna M.T., Traktman P., White P.C. Determination of functional effects of mutations in the steroid 21-hydroxylase gene (CYP21) using recombinant vaccinia virus. J. Biol. Chem. 1990, 265: 20916–20922.

    CAS  PubMed  Google Scholar 

  58. Wedell A., Thilen A., Ritzen E.M., Stengler B., Luthman H. Mutational spectrum of the steroid 21-hydroxylase gene in Sweden: implications for genetic diagnosis and association with disease manifestation. J. Clin. Endocrinol. Metab. 1994, 78: 1145–1152.

    CAS  PubMed  Google Scholar 

  59. Jaaskelainen J., Levo A., Voutilainen R., Partanen J. Population-wide evaluation of disease manifestation in relation to molecular genotype in steroid 21-hydroxylase (CYP21) deficiency: good correlation in a well-defined population. J. Clin. Endocrinol. Metab. 1997, 82: 3293–3297.

    CAS  PubMed  Google Scholar 

  60. Speiser P.W., Dupont J., Zhu D., Serrat J., Buegeleisen M., Tusie-Luna M.T., Lesser M., New M.I., White P.C. Disease expression and molecular genotype in congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Invest. 1992, 90: 584–595.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Carlson A.D., Obeid J.S., Kanellopoulou N., Wilson R.C., New M.I. Congenital adrenal hyperplasia: update on prenatal diagnosis and treatment. J. Steroid Biochem. Mol. Biol. 1999, 69: 19–29.

    Article  CAS  PubMed  Google Scholar 

  62. Day D.J., Speiser P.W., Schulze E., Bettendorf M., Fitness J., Barany F., White P.C. Identification of non-amplifying CYP21 genes when using PCR-based diagnosis of 21-hydroxylase deficiency in congenital adrenal hyperplasia (CAH) affected pedigrees. Hum. Mol. Genet. 1996, 5: 2039–2048.

    Article  CAS  PubMed  Google Scholar 

  63. Fitness J., Dixit N., Webster D., Torresani T., Pergolizzi R., Speiser P.W., Day D.J. Genotyping of CYP21, linked chromosome 6p markers, and a sex-specific gene in neonatal screening for congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 1999, 84: 960–966.

    CAS  PubMed  Google Scholar 

  64. Nordenstrom A., Thilen A., Hagenfeldt L., Larsson A., Wedell A. Genotyping is a valuable diagnostic complement to neonatal screening for congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 1999, 84: 1505–1509.

    CAS  PubMed  Google Scholar 

  65. Therrell B.L. Jr., Berenbaum S.A., Manter-Kapanke V., Simmank J., Korman K., Prentice L., Gonzalez J., Gunn S. Results of screening 1.9 million Texas newborns for 21-hydroxylase-deficient congenital adrenal hyperplasia. Pediatrics 1998, 101: 583–590.

    Article  PubMed  Google Scholar 

  66. Tusie Luna M.T., White P.C. Gene conversions and unequal crossovers between CYP21 (steroid 21-hydroxylase gene) and CYP21P involve different mechanisms. Proc. Natl. Acad. Sci. USA 1995, 92: 10796–10800.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Witchel S.F., Lee P.A. Identification of heterozygotic carriers of 21-hydroxylase deficiency: sensitivity of ACTH stimulation tests. Am. J. Med. Genet. 1998, 76: 337–342.

    Article  CAS  PubMed  Google Scholar 

  68. Lejeune-Lenain C., Cantraine F., Dufrasnes M., Prevot F., Wolter R., Franckson J.R. An improved method for the detection of heterozygosity of congenital virilizing adrenal hyperplasia. Clin. Endocrinol. (Oxf.) 1980, 12: 525–535.

    Article  CAS  Google Scholar 

  69. Knochenhauer E.S., Cortet-Rudelli C., Cunnigham R.D., Conway-Myers B.A., Dewailly D., Azziz R. Carriers of 21-hydroxylase deficiency are not at increased risk for hyperandrogenism. J. Clin. Endocrinol. Metab. 1997, 82: 479–485.

    CAS  PubMed  Google Scholar 

  70. Pang S.Y., Wallace M.A., Hofman L., Thuline H.C., Dorche C., Lyon I.C., Dobbins R.H., Kling S., Fujieda K., Suwa S. Worldwide experience in newborn screening for classical congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Pediatrics 1988, 81: 866–874.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phyllis W. Speiser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Speiser, P.W. Congenital adrenal hyperplasia: Transition from childhood to adulthood. J Endocrinol Invest 24, 681–691 (2001). https://doi.org/10.1007/BF03343913

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03343913

Key-words

Navigation