Abstract
Congenital adrenal hyperplasia (CAH) is a group of disorders caused by inborn errors of steroid metabolism. The most common form owing to 21-hydroxylase deficiency (CAH-21OHD) is present in about 1:10,000–1:15,000 live births worldwide. In its classic salt-wasting form (∼66–75% of cases) patients may suffer potentially lethal adrenal insufficiency. Non-saltwasting forms of CAH-21OHD are recognized by genital ambiguity in affected females, and by signs of androgen excess in later childhood in males. Non-classic CAH-21OHD may be detected in up to 1–3% of certain populations, and is often mistaken for idiopathic precocious pubarche in children or polycystic ovary syndrome in young women. This chapter will address issues relating to transition of CAH care from the pediatric to the adult endocrinologist.
Similar content being viewed by others
References
Merke D.P., Chrousos G.P., Eisenhofer G., Weise M., Keil M.F., Rogol A.D., Van Wyk J.J., Bornstein S.R. Adrenomedullary dysplasia and hypofunction in patients with classic 21-hydroxylase deficiency. N. Engl. J. Med. 2000, 343: 1362–1368.
Wilson R.C., Mercado A.B., Cheng K.C., New M.I. Steroid 21-hydroxylase deficiency: genotype may not predict phenotype. J. Clin. Endocrinol. Metab. 1995, 80: 2322–2329.
Thilen A., Woods K.A., Perry L.A., Savage M.O., Wedell A., Ritzen E.M. Early growth is not increased in untreated moderately severe 21-hydroxylase deficiency Acta Paediatr. 1995, 84: 894–898.
Speiser P.W., Dupont B., Rubinstein P., Piazza A., Kastelan A., New M.I. High frequency of nonclassical steroid 21-hydroxylase deficiency. Am. J. Hum. Genet. 1985, 37: 650–667.
Speiser P.W., New M.I., White P.C. Molecular genetic analysis of nonclassic steroid 21-hydroxylase deficiency associated with HLA-B14, DR1. N. Engl. J. Med. 1988, 319: 19–23.
Kohn B., Levine L.S., Pollack M.S., Pang S., Lorenzen F., Levy D., Lerner A.J., Rondanini G.F., Dupont B., New M.I. Late-onset steroid 21-hydroxylase deficiency: a variant of classical congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 1982, 55: 817–827.
Moran C., Azziz R., Carmina E., Dewailly D., Fruzzetti F., Ibanez L., Knochenhauer E.S., Marcondes J.A., Mendonca B.B., Pignatelli D., Pugeat M., Rohmer V., Speiser P.W., Witchel S.F. 21-Hydroxylase-deficient nonclassic adrenal hyperplasia is a progressive disorder: A multicenter study. Am. J. Obstet. Gynecol. 2000, 183: 1468–1474.
Eugster E.A., Dimeglio L.A., Wright J.C., Freidenberg G.R., Seshadri R., Pescovitz O.H. Height outcome in congenital adrenal hyperplasia caused by 21-hydroxylase deficiency: A metaanalysis. J. Pediatr. 2001, 138: 26–32.
Huizenga N.A., Koper J.W., De Lange P., Pols H.A., Stolk R.P., Burger H., Grobbee D.E., Brinkmann A.O., De Jong F.H., Lamberts S.W. A polymorphism in the glucocorticoid receptor gene may be associated with and increased sensitivity to glucocorticoids in vivo. J. Clin. Endocrinol. Metab. 1998, 83: 144–151.
Merke D.P., Keil M.F., Jones J.V., Fields J., Hill S., Cutler G.B. Jr. Flutamide, testolactone, and reduced hydrocortisone dose maintain normal growth velocity and bone maturation despite elevated androgen levels in children with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 2000, 85: 1114–1120.
New M.I., Gertner J.M., Speiser P.W., del Balzo P. Growth and final height in classical and nonclassical 21-hydroxylase deficiency. Acta Paediatr. Jpn. 1988, 30 (Suppl.): 79–88.
Cameron F.J., Tebbutt N., Montalto J., Yong A.B., Zacharin M., Best J.D., Warne G.L. Endocrinology and auxology of sibships with nonclassical congenital adrenal hyperplasia. Arch. Dis. Child. 1996, 74: 406–411.
Berenbaum S.A., Duck S.C., Bryk K. Behavioral effects of prenatal versus postnatal androgen excess in children with 21-hydroxylase-deficient congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 2000, 85: 727–733.
Dittmann R.W., Kappes M.E., Kappes M.H. Sexual behavior in adolescent and adult females with congenital adrenal hyperplasia. Psychoneuroendocrinology 1992, 17: 153–170.
Kuhnle U., Bullinger M., Schwarz H.P. The quality of life in adult female patients with congenital adrenal hyperplasia: a comprehensive study of the impact of genital malformations and chronic disease on female patients life. Eur. J. Pediatr. 1995, 154: 708–716.
Meyer-Bahlburg H.F., Gruen R.S., New M.I., Bell J.J., Morishima A., Shimshi M., Bueno Y., Vargas I., Baker S.W. Gender change from female to male in classical congenital adrenal hyperplasia. Horm. Behav. 1996, 30: 319–332.
Berenbaum S.A. Cognitive function in congenital adrenal hyperplasia. Endocrinol. Metab. Clin. North Am. 2001, 30: 173–192.
Barnes R.B., Rosenfield R.L., Ehrmann D.A., Cara J.F., Cuttler L., Levitsky L.L., Rosenthal I.M. Ovarian hyperandrogynism as a result of congenital adrenal virilizing disorders: evidence for perinatal masculinization of neuroendocrine function in women. J. Clin. Endocrinol. Metab. 1994, 79: 1328–1333.
Helleday J., Siwers B., Ritzen E.M., Carlstrom K. Subnormal androgen and elevated progesterone levels in women treated for congenital virilizing 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 1993, 76: 933–936.
Speiser P.W., Serrat J., New M.I., Gertner J.M. Insulin insensitivity in adrenal hyperplasia due to nonclassical steroid 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 1992, 75: 1421–1424.
Mather K.J., Kwan F., Corenblum B. Hyperinsulinemia in polycystic ovary syndrome correlates with increased cardiovascular risk independent of obesity. Fertil. Steril. 2000, 73: 150–156.
Ibanez L., Potau N., Chacon P., Pascual C., Carrascosa A. Hyperinsulinaemia, dyslipaemia and cardiovascular risk in girls with a history of premature pubarche. Diabetologia 1998, 41: 1057–1063.
Bonaccorsi A.C., Adler I., Figueiredo J.G. Male infertility due to congenital adrenal hyperplasia: testicular biopsy findings, hormonal evaluation, and therapeutic results in three patients. Fertil. Steril. 1987, 47: 664–670.
Holmes-Walker D.J., Conway G.S., Honour J.W., Rumsby G., Jacobs H.S. Menstrual disturbance and hypersecretion of progesterone in women with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Clin. Endocrinol. (Oxf.) 1995, 43: 291–296.
Van Wyk J.J., Gunther D.F., Ritzen E.M., Wedell A., Cutler G.B. Jr., Migeon C.J., New M.I. The use of adrenalectomy as a treatment for congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 1996, 81: 3180–3190.
Imperato-McGinley J., Binienda Z., Gedney J., Vaughan E. Jr. Nipple differentiation in fetal male rats treated with an inhibitor of the enzyme 5 alpha-reductase: definition of a selective role for dihydrotestosterone. Endocrinology 1986, 118: 132–137.
Lo J.C., Schwitzgebel V.M., Tyrrell J.B., Fitzgerald P.A., Kaplan S.L., Conte F.A., Grumbach M.M. Normal female infants born of mothers with classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 1999, 84: 930–936.
Feldman S., Billaud L., Thalabard J.C., Raux-Demay M.C., Mowszowicz I., Kuttenn F., Mauvais-Jarvis P. Fertility in women with late-onset adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 1992, 74: 635–639.
Urban M.D., Lee P.A., Migeon C.J. Adult height and fertility in men with congenital virilizing adrenal hyperplasia. N. Engl. J. Med. 1978, 299: 1392–1396.
Prader A., Zachmann M., Illig R. Fertility in adult males with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Acta Endocrinol. 1973, 177 (Suppl.): 57.
Willi U., Atares M., Prader A., Zachmann M. Testicular adrenal-like tissue (TALT) in congenital adrenal hyperplasia: detection by ultrasonography. Pediatr. Radiol. 1991, 21: 284–287.
Avila N.A., Shawker T.S., Jones J.V., Cutler G.B. Jr., Merke D.P. Testicular adrenal rest tissue in congenital adrenal hyperplasia: serial sonographic and clinical findings. AJR. Am. J. Roentgenol. 1999, 172: 1235–1238.
Vanzulli A., DelMaschio A., Paesano P., Braggion F., Livieri C., Angeli E., Tomasi G., Gatti C., Severi F., Chiumello G. Testicular masses in association with adrenogenital syndrome: US findings. Radiology 1992, 183: 425–429.
Srikanth M.S., West B.R., Ishitani M., Isaacs H. Jr., Applebaum H., Costin G. Benign testicular tumors in children with congenital adrenal hyperplasia. J. Pediatr. Surg. 1992, 27: 639–641.
Walker B.R., Skoog S.J., Winslow B.H., Canning D.A., Tank E.S. Testis sparing surgery for steroid unresponsive testicular tumors of the adrenogenital syndrome. J. Urol. 1997, 157: 1460–1463.
Al-Alwan I., Navarro O., Daneman D., Daneman A. Clinical utility of adrenal ultrasonography in the diagnosis of congenital adrenal hyperplasia. J. Pediatr. 1999, 135: 71–75.
Jaresch S., Kornely E., Kley H.K., Schlaghecke R. Adrenal incidentaloma and patients with homozygous or heterozygous congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 1992, 74: 685–689.
Ravichandran R., Lafferty F., McGinniss M.J., Taylor H.C. Congenital adrenal hyperplasia presenting as massive adrenal incidentalomas in the sixth decade of life: report of two patients with 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 1996, 81: 1776–1779.
Bauman A., Bauman C.G. Virilizing adrenocortical carcinoma. Development in a patient with salt-losing congenital adrenal hyperplasia. JAMA 1982, 248: 3140–3141.
Lightner E.S., Levine L.S. The adrenal incidentaloma. A pediatric perspective. Am. J. Dis. Child. 1993, 147: 1274–1276.
Kerrigan J.R., Veldhuis J.D., Leyo S.A., Iranmanesh A., Rogol A.D. Estimation of daily cortisol production and clearance rates in normal pubertal males by deconvolution analysis. J. Clin. Endocrinol. Metab. 1993, 76: 1505–1510.
Lo J.C., Grumbach M. Pregnancy outcomes in women with congenital virilizing adrenal hyperplasia. Endocrinol. Metab. Clin. North Am. 2001, 30207–229
Seckl J.R., Miller W.L. How safe is long-term prenatal glucocorticoid treatment? JAMA 1997, 277: 1077–1079.
New M.I. Prenatal treatment of congenital adrenal hyperplasia: The United States experience. Endocrinol. Metab. Clin. North Am. 2001, 30: 1–13.
Bode H.H., Rivkees S.A., Cowley D.M., Pardy K., Johnson S. Home monitoring of 17 hydroxyprogesterone levels in congenital adrenal hyperplasia with filter paper blood samples. J. Pediatr. 1999, 134: 185–189.
Lamberts S.W., Bruining H.A., de Jong F.H. Corticosteroid therapy in severe illness. N. Engl. J. Med. 1997, 337: 1285–1292.
Zarkovic M., Ciric J., Stojanovic M., Penezic Z., Trbojevic B., Drezgic M., Nesovic M. Optimizing the diagnostic criteria for standard (250 μg) and low dose (1 μg) adrenocorticotropin tests in the assessment of adrenal function. J. Clin. Endocrinol. Metab. 1999, 84: 3170–3173.
Speiser P.W., Agdere L., Ueshiba H., White P.C., New M.I. Aldosterone synthesis in salt-wasting congenital adrenal hyperplasia with complete absence of adrenal 21-hydroxylase. N. Engl. J. Med. 1991, 324: 145–149.
Rosler A., Levine L.S., Schneider B., Novogroder M., New M.I. The interrelationship of sodium balance, plasma renin activity and ACTH in congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 1977, 45: 500–512.
Reiner W.G. Assignment of sex in neonates with ambiguous genitalia. Curr. Opin. Pediatr. 1999, 11: 363–365.
Schnitzer J.J., Donahoe P.K. Surgical treatment of congenital adrenal hyperplasia. Endocrinol. Metab. Clin. North Am. 2001, 30: 137–154
Cargill M., Altshuler D., Ireland J., Sklar P., Ardlie K., Patil N., Shaw N., Lane C.R., Lim E.P., Kalyanaraman N., Nemesh J., Ziaugra L., Friedland L., Rolfe A., Warrington J., Lipshutz R., Daley G.Q., Lander E.S. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat. Genet. 1999, 22: 231–238.
White P.C., Vitek A., Dupont B., New M.I. Characterization of frequent deletions causing steroid 21-hydroxylase deficiency. Proc. Natl. Acad. Sci. USA 1988, 85: 4436–4440.
Higashi Y., Tanae A., Inoue H., Hiromasa T., Fujii-Kuriyama Y. Aberrant splicing and missense mutations cause steroid 21-hydroxylase [P-450(C21)] deficiency in humans: possible gene conversion products. Proc. Natl. Acad. Sci. USA 1988, 85: 7486–7490.
White P.C., Speiser P.W. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Endocr. Rev. 2000, 21: 245–291.
Amor M., Parker K.L., Globerman H., New M.I., White P.C. Mutation in the CYP21B gene (Ile-172—Asn) causes steroid 21-hydroxylase deficiency. Proc. Natl. Acad. Sci. USA 1988, 85: 1600–1604.
Tusie-Luna M.T., Traktman P., White P.C. Determination of functional effects of mutations in the steroid 21-hydroxylase gene (CYP21) using recombinant vaccinia virus. J. Biol. Chem. 1990, 265: 20916–20922.
Wedell A., Thilen A., Ritzen E.M., Stengler B., Luthman H. Mutational spectrum of the steroid 21-hydroxylase gene in Sweden: implications for genetic diagnosis and association with disease manifestation. J. Clin. Endocrinol. Metab. 1994, 78: 1145–1152.
Jaaskelainen J., Levo A., Voutilainen R., Partanen J. Population-wide evaluation of disease manifestation in relation to molecular genotype in steroid 21-hydroxylase (CYP21) deficiency: good correlation in a well-defined population. J. Clin. Endocrinol. Metab. 1997, 82: 3293–3297.
Speiser P.W., Dupont J., Zhu D., Serrat J., Buegeleisen M., Tusie-Luna M.T., Lesser M., New M.I., White P.C. Disease expression and molecular genotype in congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Invest. 1992, 90: 584–595.
Carlson A.D., Obeid J.S., Kanellopoulou N., Wilson R.C., New M.I. Congenital adrenal hyperplasia: update on prenatal diagnosis and treatment. J. Steroid Biochem. Mol. Biol. 1999, 69: 19–29.
Day D.J., Speiser P.W., Schulze E., Bettendorf M., Fitness J., Barany F., White P.C. Identification of non-amplifying CYP21 genes when using PCR-based diagnosis of 21-hydroxylase deficiency in congenital adrenal hyperplasia (CAH) affected pedigrees. Hum. Mol. Genet. 1996, 5: 2039–2048.
Fitness J., Dixit N., Webster D., Torresani T., Pergolizzi R., Speiser P.W., Day D.J. Genotyping of CYP21, linked chromosome 6p markers, and a sex-specific gene in neonatal screening for congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 1999, 84: 960–966.
Nordenstrom A., Thilen A., Hagenfeldt L., Larsson A., Wedell A. Genotyping is a valuable diagnostic complement to neonatal screening for congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 1999, 84: 1505–1509.
Therrell B.L. Jr., Berenbaum S.A., Manter-Kapanke V., Simmank J., Korman K., Prentice L., Gonzalez J., Gunn S. Results of screening 1.9 million Texas newborns for 21-hydroxylase-deficient congenital adrenal hyperplasia. Pediatrics 1998, 101: 583–590.
Tusie Luna M.T., White P.C. Gene conversions and unequal crossovers between CYP21 (steroid 21-hydroxylase gene) and CYP21P involve different mechanisms. Proc. Natl. Acad. Sci. USA 1995, 92: 10796–10800.
Witchel S.F., Lee P.A. Identification of heterozygotic carriers of 21-hydroxylase deficiency: sensitivity of ACTH stimulation tests. Am. J. Med. Genet. 1998, 76: 337–342.
Lejeune-Lenain C., Cantraine F., Dufrasnes M., Prevot F., Wolter R., Franckson J.R. An improved method for the detection of heterozygosity of congenital virilizing adrenal hyperplasia. Clin. Endocrinol. (Oxf.) 1980, 12: 525–535.
Knochenhauer E.S., Cortet-Rudelli C., Cunnigham R.D., Conway-Myers B.A., Dewailly D., Azziz R. Carriers of 21-hydroxylase deficiency are not at increased risk for hyperandrogenism. J. Clin. Endocrinol. Metab. 1997, 82: 479–485.
Pang S.Y., Wallace M.A., Hofman L., Thuline H.C., Dorche C., Lyon I.C., Dobbins R.H., Kling S., Fujieda K., Suwa S. Worldwide experience in newborn screening for classical congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Pediatrics 1988, 81: 866–874.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Speiser, P.W. Congenital adrenal hyperplasia: Transition from childhood to adulthood. J Endocrinol Invest 24, 681–691 (2001). https://doi.org/10.1007/BF03343913
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF03343913