Abstract
Type 2 diabetes is characterized by two fundamental biological defects: a reduced glucose-dependent insulin secretion and an increased resistance to the action of insulin at the level of various target tissues. While the use of agents to improve the insulin secretory activity of the islets of Langerhans has witnessed the flourishing of several new drugs over the years, a much greater difficulty has been experienced in the search for insulin-sensitizing drugs. The aim of this article is to critically review this topic, and to emphasize the importance of providing alternative strategies for the management of Type 2 diabetes.
Similar content being viewed by others
References
DeFronzo R.A., Bonodonna R.C., Ferrannini E. Pathogenesis of NIDDM: a balanced review. Diabetes Care 1992, 15: 318–368.
Chen C. Troglitazone: an antidiabetic agent. Am. J. Health Syst. Pharm. 1998, 55: 905–925.
Lyonette C., Martz D., Martin A. L’emploitherapeutique de derives du vanadinium. Presse Med. 1899, 191–192.
Goldfine A.B., Simson D.C., Folli F., Patti M.E., Kahn R.C. In vitro and in vivo studies of vanadate in human and rodent diabetes mellitus. Mol. Cell. Biochem. 1995, 153: 217–131.
Van Etten R.L., Waymack P.P., Rehkop D.M. J. Am. Chem. Soc. 1974, 96: 6782–6785.
Shechter Y., Karlish S.J.D. Insulin-like stimulation of glucose oxidation in rat adipocytes by vanadyl (IV) ions. Nature 1980, 284: 556–558.
Shechter Y., Ron A. Effect of depletion of phosphate and bicarbonate ions on insulin action in rat adipocytes. J. Biol. Chem. 1986, 261: 14945–14950.
Degani H., Gochin M., Karlish S.J.D., Shechter Y. Electron paramagnetic studies and insulin-like effects of vanadium in rat adipocytes. Biochemistry 1981, 20: 5795–5799.
Tamura S., Brown T.A., Dubler R.E., Larner J. Insulin-like effect of vanadate on adipocyte glycogen synthase and on phosphorylation of 95,000 Dalton subunit of insulin receptor. Biochem. Biophys. Res. Commun. 1983, 113: 80–86.
Fantus I.G., Deragon G., Lai R., Tang S. Modulation of insulin action by vanadate: evidence of a role for phosphotyrosine activity to alter cellular signaling. Mol. Cell. Biochem. 1995, 153: 103–112.
Fantus I.G., George R., Rang S., Chong P., Poznansky M.J. The insulin-mimetic effect agent vanadate promotes receptor endocytosis and inhibits intracellular lig-and-receptor degradation by a mechanism distinct from lysosomotropic agents. Diabetes 1996, 45: 1084–1093.
Wingard D.L., Barrett-Connor E.L., Ferrara A. Is insulin really a heart disease risk factor? Diabetes Care 1995, 18: 1299–1304.
Jarrett R.J. Is insulin atherogenic? Diabetologia 1988, 31: 71–75.
Salonen J.T., Lakka T.A., Valkonen V.P., Everson S.A., Kaplan G.A. Hyperinsulinemia is associated with the incidence of hypertension and dyslipidemia in middle-aged men. Diabetes 1998, 47: 270–175.
Hidaka S. A study of microproteinuria among diabetic and obese subjects without clinically overt proteinuria. Nippon Jinzo Gakkai Shi 1992, 34: 125–132.
Haaber A.B., Kofoed-Enevoldsen A., Jensen T. The prevalence of hypercholesterolemia and its relationship with albuminuria in insulin-dependent diabetic patients: an epidemiological study. Diabet. Med. 1992, 9: 557–561.
Tung P., Ginier P., Levin S.R., Hershman J.D., Hershman J.M. Clinical characteristics associated with microalbuminuria in adult diabetic population. J. Diabetes Complications 1990, 4: 15–20.
UK Prospective Diabetes Study, IX. Relationships of urinary albumin and N-acetylglucosaminidase to glycaemia and hypertension at diagnosis of Type 2 (non-insulin dependent) diabetes mellitus and after 3 months of diet therapy. Diabetologia 1993, 36: 835–842.
Suraniti S., Bled F., Girault A., Fressinaud P., Marre M. Serum lipids and urinary albumin excretion in noninsulin dependent diabetics. Mol. Cell. Biochem. 1992, 109: 197–200.
Haffner S.M., Gonzalez C., Valdez R.A., Mykkanene L., Hazuda H.P. Is microalbuminuria part of the prediabetic state? The Mexico City Diabetes Study. Diabetologia 1993, 36: 1002–1006.
Julien P., Vohl M.C., Gaudet D., Gagne C., Levesque G., Despres J.P., Cadelis F., Brun L.D., Nadeau A., Ven Murthy M.R. Hyperinsulinemia and abdominal obesity affect the expression of hypertriglyceridemia in heterozygous familial lipoprotein lipase deficiency. Diabetes 1997, 46: 2063–2068.
Perfetti R., Barnett P.S., Mathur R., Egan J.M. Novel therapeutic strategies for the treatment of Type 2 diabetes. Diabetes Metab. Rev. 1998, 14: 207–125.
Sreedhara A., Nobuyuki S., Patwardhan A., Rao C.P. One electron reduction of vanadate (V) to oxovanadium (IV) by low-molecular-weight biocomponents like saccharides and ascorbic acid: effect of oxovanadium (IV) complexes on pUC18 DNA and on lipid peroxidation in isolated rat hepatocytes. Biochem. Biophys. Res. Comm. 1996, 224: 115–120.
Gibbons I.R., Mocz G. Photocatalytic cleavage of proteins with vanadate and other transition metal complexes. Methods Enzymol. 1991, 196: 428–442.
Cremo C.R., Grammer J.C., Yount R.G. Vanadate-mediated photocleavage of myosin. Methods Enzymol. 1991, 196: 442–449.
Correia J.J., Lipscomb L.D., Dabrowiak J.C., Isern N., Zubieta J. Cleavage of tubulin by vanadate ion. Arch. Biochem. Biophys. 1994, 309: 94–104.
Domingo J.L., Sanchez D.J., Gomez M., Liobet J.M., Corbella J. Oral vanadate and tyrone in the treatment of diabetes mellitus in rats: improvement of glucose homeostasis and negative side effects. Vet. Hum. Toxicol. 1993, 35: 495–500.
Domingo J.L., Bosque M.A., Luna M., Corbella J. Prevention by Tiron (sodium 4,5-dihydroxybenzene-1,3-disulfonate) of vanadate induced developmental toxicity in mice. Teratology 1993, 48: 133–138.
Rajagopalan K.V. Molybdenum - an essential trace element. Nutr. Rev. 1987, 45: 321–328.
Fillat C., Rodriguez-Gil J.E., Guinovart J.J. Molybdate and tungstate act like vanadate on glucose metabolism in isolated hepatocytes. Biochem. J. 1992, 282: 659–663.
Goto Y., Kida K., Ikeuchi M., Kaino Y., Matsuda H. Synergism in insulin-like effects of molybdate plus H2O2 or tungstate plus H2O2 on glucose transport by isolated rat adipocytes. Biochem. Pharm. 1992, 44: 174–177.
Mooney R.A., Bordwell K.L. Differential dephosphorylation of the insulin receptor and its 160-kDA substrate (pp160) in rat adipocytes. J. Biol. Chem. 1992, 267: 14054–14060.
Ozcelikay A.T., Becker D.J., Ongemba L.N., Pottier A., Henquin J., Brichard S.M. Improvement of glucose and lipid metabolism in diabetic rats treated with molybdate. Am. J. Physiol. Endocrinol. Metab. 1996, 270: E344–E352.
Li J., Elberg G., Gefel D., Shechter Y. Permolybdate and pertungstate - potent stimulators of insulin effects in rat adipocytes. Mechanism of action. Biochemistry 1995, 34: 6218–6125.
Matsumoto J. Vanadate, molybdate and tungstate for orthomolecular medicine. Med. Hypotheses 1994, 43: 177–182.
Barbera A., Fernandez-Alverez J., Truc A., Gomis R., Guinovart J.J. Effects of tungstate in neonatally streptozotocin-induced diabetic rats: mechanism leading to normalization of glycemia. Diabetologia 1997, 40: 143–149.
Fursinn C., Englisch R., Ebner K., Nowotny P., Volg C., Waldhausl W. Insulin-like vs. non-insulin-like stimulation of glucose metabolism by vanadinium, tungstate and selenium compounds in rat muscle. Life Sci. 1996, 59: 1989–2000.
Jonas J.C., Henquin J.C. Possible involvement of a tyrosine kinase-dependent pathway in the regulation of phosphoinositide metabolism by vanadate in normal mouse islets. Biochem. J. 1996, 315: 49–55.
Barbera A., Rodriguez-Gil J.E., Guinovart J.J. Insulin-like actions of tungstate in diabetic rats: normalization of hepatic glucose metabolism. J. Biol. Chem. 1994, 269: 20047–20053.
Anderson R.A. Chromium and parental nutrition. Nutrition 1995, 11: 83–86.
Lee N.A., Reasner C.A. Beneficial effect of chromium supplementation on serum triglyceride levels in NIDDM. Diabetes Care 1994, 17: 1449–1452.
Hendricks D.G., Mahoneu A.W. Glucose tolerance in Zn2+ deficient rats. J. Nutr. 1972, 102: 1079–1084.
Donaldson D.L., Smith C.C., Walker M.S., Rennert O.M. Tissue zinc and copper levels in diabetic C57BL/KsJ (db/db) mice fed a zinc-deficient diet: lack of evidence for specific depletion of tissue zinc stores. J. Nutr. 1988, 118: 1502–1508.
Haglund B., Ryckenberg K., Selenius O., Dahlquist G. Evidence of a relationship between childhood-onset Type 1 diabetes and low groundwater concentrations of zinc. Diabetes Care 1996, 19: 873–875.
Kinlaw W.B., Levine A.S., Morley J.E., McClain C.J. Abnormal Zn2+ metabolism in type II diabetes melltus. Am. J. Med. 1983, 75: 273–177.
Sprietsma J.E., Schuitemaker G.E. Diabetes can be prevented by reducing insulin production. Med. Hypotheses 1994, 42: 15–23.
Faure P., Roussel A., Coundray C., Richard M.J., Halimi S., Favier A. Zinc and insulin sensitivity. Biol. Trace Elem. Res. 1992, 32: 305–310.
Shisheva A., Gefel D., Shechter Y. Insulinlike effects of zinc ion in vitro and in vivo. Preferential effects on desensitized adipocytes and induction of normoglycemia in streptozocin-induced rats. Diabetes 1992, 41: 982–988.
Becker D.J., Reul B., Ozvelikay A.T., Buchet J.P., Henquin J.C., Brichard S.M. Oral selenate improves glucose homeostasis and partly reverses abnormal expression of liver glycolytic and gluconeogenic enzymes in diabetic rats. Diabetologia 1996, 39: 3–11.
Ghosh R., Mukherjee B., Chatterjee M. A novel effect of selenium on streptozotocin-induced diabetic mice. Diabetes Res. 1994, 25: 165–171.
Eibl N.L., Kopp H.P., Nowak H.R., Schnack C.J., Hopmier P.G., Schernthaner G. Hypomagnesemia in type II diabetes: effect of 3-month replacement therapy. Diabetes Care 1995, 18: 188–192.
Balon T.W., Gu J.L., Tokuyama Y., Jasman A.P., Nadler J.L. Magnesium supplementation reduces development of diabetes in a rat model of spontaneous NIDDM. Am. J. Physiol. Endocrinol. Metab. 1995, 269: E745–E752.
Gorika F., Allegra A., Di Benedetto A., Giocobbe M.S., Romano G., Cucinotta D., Buemi M., Ceruso D. Effects of oral magnesium supplementation on plasma lipid concentrations in patients with non-insulindependent diabetes mellitus. Magnes. Res. 1994, 7: 43–47.
American Diabetes Association. Magnesium supplementation in the treatment of diabetes. Diabetes Care 1992, 15: 1065–1067.
Saltiel A.R., Olefsky J.M. Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes 1996, 45: 1661–1669.
Tominaga M., Igarashi M., Daimon M., Eguchi H., Matsumoto M., Sekikawa A., Yamatomi K., Sasaki H. Thiazolidinediones (AD4533 and CS-045) improve hepatic insulin resistance in streptozotocin-induced diabetic rats. Endocr. J. 1993, 40: 343–349.
Young P.W., Buckle D.R., Cantello B.C., Chapman H., Clapham J.C., Coyle P.J., Haigh D., Hindley R.M., Holder J.C., Kallender H., Latter A.J., Lawrie K.W.M., Mossakowska D., Murphy G.J., Roxbee C.L., Smith S.A. Identification of high-affinity binding sites for the insulin sensitizer rosiglitazone (BRL49653) in rodent and human adipocytes using a radioiodinated ligand for peroxisomal proliferator-activated receptor gamma. J. Pharmacol. Exp. Ther. 1988, 284: 751–759.
Ishizuka T., Itaya S., Wada H., Ishizawa M., Kimura M., Kajita K., Kanoh Y., Miura A., Muto N., Yasuda K. Differential effect of the antidiabetic thiazolidinediones troglitazone and pioglitazone on human platelet aggregation mechanism. Diabetes 1998, 47: 1494–1500.
Balfour J.A., Plosker G.L. Rosiglitazone. Drugs 1999, 57: 921–932.
Bloomgarden Z.T. American Diabetes Association Annual Meeting 1996: The etiology of type II diabetes, obesity, and the treatment of type II diabetes. Diabetes Care 1996, 19: 1311–1315.
Suter S.L., Nolan J.J., Wallace P., Gumbiner B., Olefsky J.M. Metabolic effects of a new oral hypoglycemic agent CS-045 in NIDDM subjects. Diabetes Care 1992, 15: 193–203.
Nolan J.J., Ludvik B., Ludvik M., Beerdsen P., Joyce M., Olefsky J.M. Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N. Engl. J. Med. 1994, 331: 1188–1193.
Inzucchi S.E., Maggs D.G., Spollett G.R., Page S.L., Rife F.S., Walton V., Shulman G.I. Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. N. Engl. J. Med. 1998, 338: 867–872.
Troglitazone Study Group. The metabolic effects of troglitazone in non-insulin dependent diabetes. Diabetes 1997, 46 (Suppl. 1): 149A (Abstract).
Ott P., Ranek L., Young M.A. Pharmacokinetics of troglitazone, a PPAR-gamma agonist, in patients with hepatic insufficiency. Eur. J. Clin. Pharmacol. 1998, 54: 567–571.
Digby J.E., Montangue C.T., Seweter C.P., Sanders L., Wilkinson W.O., O’Rahilly S., Prins J.B. Thazolidinedione exposure increases the expression of uncoupling protein 1 in cultured adipocytes. Diabetes 1998, 47: 138–141.
Kelly I.E., Han T.S., Walsh K., Lean M.E.J. Effects of a thiazolidinedione compound on body fat and fat distribution of patients with Type 2 diabetes. Diabetes Care 1999, 22: 288–193.
Wang M., Wise S.C., Leff T., Su T.Z. Troglitazone, an antidiabetic agent, inhibits cholesterol biosynthesis through a mechanism independent of perixosome proliferator-activated receptor gamma. Diabetes 1999, 48: 254–260.
Peraldi P., Xu M., Spiegelman B.M. Thiazolidinediones block tumor necrosis factor-alpha-induced inhibition of insulin signaling. J. Clin. Invest. 1997, 100: 1863–1869.
Kruzynska Y.T., Mukherjee R., Jow L., Dana S., Paterniti J.R., Olefsky J.M. Skeletal muscle peroxisome proliferator-activated receptor-gamma expression in obesity and non insulin-dependent diabetes mellitus. J. Clin. Invest. 1998, 101: 543–548.
Burant C.F., Sreenan S., Hirano K., Tai T.A., Lohmiller J., Luckens J., Davidson N.O., Ross S., Graves R.A. Troglitazone action is independent of adipose tissue. J. Clin. Invest. 1997, 100: 2900–2908.
Saku K., Zhang B., Ohta T., Arakawa K. Troglitazone lowers blood pressure and enhances insulin sensitivity in Watanabe heritable hyperlipidemic rabbits. Am. J. Hypertens. 1997, 10: 1027–1033.
Lew R.E., Meehan W.P., Xi X.P., Graf K., Wuthrich D.A., Coats W., Faxon D., Hsueh W.A. Troglitazone inhibits vascular smooth muscle cell growth and intimal hyperplasia. J. Clin. Invest. 1996, 98: 1897–1905.
Cavaghan M.K., Ehrmann D.A., Byrne M.M., Polonsky K.S. Treatment with the oral antidiabetic agent troglitazone improves beta cell responses to glucose in subjects with impaired glucose tolerance. J. Clin. Invest. 1997, 100: 530–537.
Dunaif A., Scott D., Finegood D., Quintana B., Whitcomb R. The insulin-sensitizing agent troglitazone improves metabolic and reproductive abnormalities in the polycistic ovary syndrome. J. Clin. Endocrinol. Metab. 1996, 81: 3299–3306.
Mizutani T., Yoshida K., Kawazoe S. Formation of toxic metabolites from thiabendazole and other thiazoles in mice. Identification of thioamides as ring cleavage products. Drug Metab. Dispos. 1994, 22: 750–755.
Shimabukuro M., Higa S., Shinzato T., Nagamine F., Komiya I., Takasu N. Cardioprotective effects of troglitazone in streptozotocin-induced diabetic rats. Metabolism 1996, 45: 1168–1173.
Neuschwander-Tetri B.A., Isley W.L., Oki J.C., Ramrakhani S., Quiason S.G., Philipps N.J., Brunt E.M. Troglitazone-induced hepatic failure leading to liver transplantation. Ann. Intern. Med. 1998, 129: 38–41.
Imura H. A novel antidiabetic drug, troglitazone. Reason for hope and concern. N. Engl. J. Med. 1998, 338: 908–909.
Schoonjans K., Peidado-Onsbure J., Lefebvre A.M., Heyman R.A., Briggs M., Deeb S., Staels B., Auwerx J. PPAR-alpha and PPAR-gamma activators direct a distint tissues-specific transcriptional response via PPRE in the lipoprotein lipase gene. EMBO J. 1996, 15: 5336–5348.
Kanoh Y., Bandyopadhyay G., Sajan M.P., Standaert M.L., Farese R.V. Thiazolidinedione treatment enhances insulin effects on protein kinase C-zeta/lambda activation and glucose transport in adipocytes of nondiabetic and Goto-Kakizaki type II diabetic rats. J. Biol. Chem. 2000, 275(22): 16690–16696.
Gomis R., Jones N.P., Vallace S.E., Patwardhan R. Low-dose rosiglitazone (RSG) provides additional glycemic control when combined with sulfonylureas in Type 2 diabetes (T2D). ADA 1999 Annual Meeting. Abstract.
Souza S.C., Yamamoto M.T., Franciosa M.D., Lien P., Greenberg A.S. BRL 49653 blocks the lipolytic actions of tumor necrosis factor-alpha: a potential new insulin-sensitizing mechanism for thiazolidinediones. Diabetes 1998, 47: 691–695.
Food and Drug Administration Endocrinologic and Metabolic Drugs Advisory Committe. April 22, 1999.
Chaput E., Saladin R., Silvestre M., Edgar A.D. Fenofibrate and rosiglitazone lower serum triglycerides with opposing effects on body weight. Biochem. Biophys. Res. Commun. 2000, 271: 445–450.
Rosiglitazone package insert. SmithKline Beecham.
Walker A.B., Chattington P.D., Buckingham R.E., Williams G. The thiazolidinedione rosiglitazone (BRL49653) lowers blood pressure and protects against impairment of endothelial function in Zucker fatty rats. Diabetes 1999, 48: 1448–1453.
Yamasaki Y., Kawamori R., Wasada T., Sato A., Omori Y., Eguchi H., Tominaga M., Sasaki H., Ikeda M., Kubota M., Ishida Y., Hozumi T., Baba S., Uehara M., Shichiri M., Kaneko T. Pioglitazone (AD4833) ameliorates insulin resistance in patients with NIDDM. AD4833 Glucose Clamp Study Group, Japan. Tohoku J. Exp. Med. 1997, 183: 173–183.
Matsuhisa M., Shi Z.Q., Wan C., Lekas M., Rodgers C.D., Giacca A., Kawamori R., Vranic M. The effect of pioglitazone on hepatic glucose uptake measured with indirect and direct methods in alloxan-induced diabetic dogs. Diabetes 1997, 46: 224–131.
Fulgencio J.P., Kohl C., Girard J., Pegorier J.P. Troglitazone inhibits fatty acid oxidation and esterification and gluconeogenesis in isolated hepatocytes from starved rats. Diabetes 1996, 45: 1556–1562.
Ohtani K., Shimuzu H., Tanaka Y., Sata N., Mori M. Pioglitazone hydrocloride stimulates insulin secretion in HIT-T 15 cells by inducing Ca2+ influx. J. Endocrinol. 1996, 150: 107–111.
Buchanan T.A., Meehan W.P., Jeng D., Chan T.M., Nadler J.L., Scott S., Rude R.K., Hsueh W.A. Blood pressure lowering by pioglitazone. Evidence for a direct vascular effect. J. Clin. Invest. 1995, 96: 354–360.
Lohray B.B., Bhushan V., Rao B.P., Madhavan G.R., Murali N., Rao K.N., Reddy A.K., Rajesh B.M., Reddy P.G., Chakrabarti R., Vikramadithyan R.K., Rajagopalan R., Mamidi R.N., Jajoo H.K., Subramaniam S. Novel euglycemic and hypolipidemic agents. J. Med. Chem. 1998, 41: 1619–1630.
Anonymous. New drug overview. Pioglitazone hydrochloride. Am. J. Health Syst. Pharm. 2000, 57: 124–125.
Berger J., Bailey P., Biswas C., Cullinan C.A., Doebber T.W., Hayes N.S., Saperstein R., Smith R.G., Leibowitz M.D. Thiozolidines produces a conformational change in peroxisomal proliferator-activated receptor-gamma: binding and activation correlate with antidiabetic actions in db/db mice. Endocrinology 1996, 137: 4189–4195.
Berger J., Biswas C., Hayes N., Ventre J., Wu M., Doebber T.W. An antidiabetic thiazolidinedione potentiates insulin stimulation of glycogen synthase in rat adipose tissue. Endocrinology 1996, 137: 1984–1990.
Zhang B., Graziano M.P., Doebber T.W., Leibowitz M.D., White-Carrington S., Szalkowski D.M., Hey P.J., Wu M., Cullinan C.A., Bailey P., Lollmann B., Frederich R., Flier J.S., Strader C.D., Smith R.G. Down-regulation of the expression of the obese gene by an antidiabetic thiazolidinedione in Zucker diabetic fatty rats and db/db mice. J. Biol. Chem. 1996, 271: 9455–9459.
Camirand A., Marie V., Rabelo R., Silva J.E. Thiazolidinediones stimulate uncoupling protein-2 expression in cell lines representing white and brown adipose tissues and skeletal muscle. Endocrinology 1998, 139: 428–431.
Chaiken R.L., Eckert-Norton M., Pasmantier R., Boden G., Ryan I., Gelfand R.A., Lebovitz H.E. Metabolic effects of darglitazone, an insulin sensitizer, in NIDDM subjects. Diabetologia 1995, 38: 1307–1312.
Stevenson R.W., Mc Person R.K., Persson L.M., Generoux P.E., Swick A.G., Spitzer J., Herbest J.J., Andrews K.M., Kreutter D.K., Gibbs E.M. The antihyperglycemic agent englitiazone prevents the deefect in glucose transport in rats fed a highfat diet. Diabetes 1996, 45: 60–66.
Sarges R., Hank R.E., Blake J.F., Bordner J., Bussolotti D.L., Hargorove D.M., Treadway B., Gibbs E.M. Glucose transport-enhacing and hypoglycemic activity of 2-methyl-2-phenoxy-3-phenylproppanoic acids. J. Med. Chem. 1996, 39: 4783–4803.
Adams M.D. Raman P. Judd R.L. Comparative effects of englitazone and glyburide on gluconeogenesis and glycolysis in the isolated perfused rat liver. Biochem. Pharmacol. 1998, 55: 1915–1920.
Rowe I.C., Lee K., Khan R.N., Ashford M.L. Effect of englitiazone on K+-ATP and calcium-activated non-selective cation channels in CRI-G1 insulin secreting cells. Br. J.Pharmacol. 1997, 121: 531–539.
Pershadsingh H.A., Szollosi J., Benson S., Hyun W.C., Feuerstein B.G., Kurtz T.W. Effects of ciglitazone on blood pressure and intracellular calcium metabolism. Hypertension 1993, 21: 1020–1023.
Morikang E., Benson S., Kurtz T.W., Pershadsingh H.A. Effects of thiazolidinediones on growth and differentiation of human aorta and coronary myocites. Am. J. Hypertens. 1997, 10: 440–446.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Perfetti, R., Chamie, K. Enhancing insulin action: From chemical elements to thiazolidinediones. J Endocrinol Invest 24, 274–287 (2001). https://doi.org/10.1007/BF03343858
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF03343858