Skip to main content

Advertisement

Log in

Enhancing insulin action: From chemical elements to thiazolidinediones

  • Review Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Type 2 diabetes is characterized by two fundamental biological defects: a reduced glucose-dependent insulin secretion and an increased resistance to the action of insulin at the level of various target tissues. While the use of agents to improve the insulin secretory activity of the islets of Langerhans has witnessed the flourishing of several new drugs over the years, a much greater difficulty has been experienced in the search for insulin-sensitizing drugs. The aim of this article is to critically review this topic, and to emphasize the importance of providing alternative strategies for the management of Type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DeFronzo R.A., Bonodonna R.C., Ferrannini E. Pathogenesis of NIDDM: a balanced review. Diabetes Care 1992, 15: 318–368.

    CAS  PubMed  Google Scholar 

  2. Chen C. Troglitazone: an antidiabetic agent. Am. J. Health Syst. Pharm. 1998, 55: 905–925.

    CAS  PubMed  Google Scholar 

  3. Lyonette C., Martz D., Martin A. L’emploitherapeutique de derives du vanadinium. Presse Med. 1899, 191–192.

    Google Scholar 

  4. Goldfine A.B., Simson D.C., Folli F., Patti M.E., Kahn R.C. In vitro and in vivo studies of vanadate in human and rodent diabetes mellitus. Mol. Cell. Biochem. 1995, 153: 217–131.

    CAS  PubMed  Google Scholar 

  5. Van Etten R.L., Waymack P.P., Rehkop D.M. J. Am. Chem. Soc. 1974, 96: 6782–6785.

    Google Scholar 

  6. Shechter Y., Karlish S.J.D. Insulin-like stimulation of glucose oxidation in rat adipocytes by vanadyl (IV) ions. Nature 1980, 284: 556–558.

    CAS  PubMed  Google Scholar 

  7. Shechter Y., Ron A. Effect of depletion of phosphate and bicarbonate ions on insulin action in rat adipocytes. J. Biol. Chem. 1986, 261: 14945–14950.

    CAS  PubMed  Google Scholar 

  8. Degani H., Gochin M., Karlish S.J.D., Shechter Y. Electron paramagnetic studies and insulin-like effects of vanadium in rat adipocytes. Biochemistry 1981, 20: 5795–5799.

    CAS  PubMed  Google Scholar 

  9. Tamura S., Brown T.A., Dubler R.E., Larner J. Insulin-like effect of vanadate on adipocyte glycogen synthase and on phosphorylation of 95,000 Dalton subunit of insulin receptor. Biochem. Biophys. Res. Commun. 1983, 113: 80–86.

    CAS  PubMed  Google Scholar 

  10. Fantus I.G., Deragon G., Lai R., Tang S. Modulation of insulin action by vanadate: evidence of a role for phosphotyrosine activity to alter cellular signaling. Mol. Cell. Biochem. 1995, 153: 103–112.

    CAS  PubMed  Google Scholar 

  11. Fantus I.G., George R., Rang S., Chong P., Poznansky M.J. The insulin-mimetic effect agent vanadate promotes receptor endocytosis and inhibits intracellular lig-and-receptor degradation by a mechanism distinct from lysosomotropic agents. Diabetes 1996, 45: 1084–1093.

    CAS  PubMed  Google Scholar 

  12. Wingard D.L., Barrett-Connor E.L., Ferrara A. Is insulin really a heart disease risk factor? Diabetes Care 1995, 18: 1299–1304.

    CAS  PubMed  Google Scholar 

  13. Jarrett R.J. Is insulin atherogenic? Diabetologia 1988, 31: 71–75.

    CAS  PubMed  Google Scholar 

  14. Salonen J.T., Lakka T.A., Valkonen V.P., Everson S.A., Kaplan G.A. Hyperinsulinemia is associated with the incidence of hypertension and dyslipidemia in middle-aged men. Diabetes 1998, 47: 270–175.

    CAS  PubMed  Google Scholar 

  15. Hidaka S. A study of microproteinuria among diabetic and obese subjects without clinically overt proteinuria. Nippon Jinzo Gakkai Shi 1992, 34: 125–132.

    CAS  PubMed  Google Scholar 

  16. Haaber A.B., Kofoed-Enevoldsen A., Jensen T. The prevalence of hypercholesterolemia and its relationship with albuminuria in insulin-dependent diabetic patients: an epidemiological study. Diabet. Med. 1992, 9: 557–561.

    CAS  PubMed  Google Scholar 

  17. Tung P., Ginier P., Levin S.R., Hershman J.D., Hershman J.M. Clinical characteristics associated with microalbuminuria in adult diabetic population. J. Diabetes Complications 1990, 4: 15–20.

    CAS  Google Scholar 

  18. UK Prospective Diabetes Study, IX. Relationships of urinary albumin and N-acetylglucosaminidase to glycaemia and hypertension at diagnosis of Type 2 (non-insulin dependent) diabetes mellitus and after 3 months of diet therapy. Diabetologia 1993, 36: 835–842.

    Google Scholar 

  19. Suraniti S., Bled F., Girault A., Fressinaud P., Marre M. Serum lipids and urinary albumin excretion in noninsulin dependent diabetics. Mol. Cell. Biochem. 1992, 109: 197–200.

    CAS  PubMed  Google Scholar 

  20. Haffner S.M., Gonzalez C., Valdez R.A., Mykkanene L., Hazuda H.P. Is microalbuminuria part of the prediabetic state? The Mexico City Diabetes Study. Diabetologia 1993, 36: 1002–1006.

    CAS  PubMed  Google Scholar 

  21. Julien P., Vohl M.C., Gaudet D., Gagne C., Levesque G., Despres J.P., Cadelis F., Brun L.D., Nadeau A., Ven Murthy M.R. Hyperinsulinemia and abdominal obesity affect the expression of hypertriglyceridemia in heterozygous familial lipoprotein lipase deficiency. Diabetes 1997, 46: 2063–2068.

    CAS  PubMed  Google Scholar 

  22. Perfetti R., Barnett P.S., Mathur R., Egan J.M. Novel therapeutic strategies for the treatment of Type 2 diabetes. Diabetes Metab. Rev. 1998, 14: 207–125.

    CAS  PubMed  Google Scholar 

  23. Sreedhara A., Nobuyuki S., Patwardhan A., Rao C.P. One electron reduction of vanadate (V) to oxovanadium (IV) by low-molecular-weight biocomponents like saccharides and ascorbic acid: effect of oxovanadium (IV) complexes on pUC18 DNA and on lipid peroxidation in isolated rat hepatocytes. Biochem. Biophys. Res. Comm. 1996, 224: 115–120.

    CAS  PubMed  Google Scholar 

  24. Gibbons I.R., Mocz G. Photocatalytic cleavage of proteins with vanadate and other transition metal complexes. Methods Enzymol. 1991, 196: 428–442.

    CAS  PubMed  Google Scholar 

  25. Cremo C.R., Grammer J.C., Yount R.G. Vanadate-mediated photocleavage of myosin. Methods Enzymol. 1991, 196: 442–449.

    CAS  PubMed  Google Scholar 

  26. Correia J.J., Lipscomb L.D., Dabrowiak J.C., Isern N., Zubieta J. Cleavage of tubulin by vanadate ion. Arch. Biochem. Biophys. 1994, 309: 94–104.

    CAS  PubMed  Google Scholar 

  27. Domingo J.L., Sanchez D.J., Gomez M., Liobet J.M., Corbella J. Oral vanadate and tyrone in the treatment of diabetes mellitus in rats: improvement of glucose homeostasis and negative side effects. Vet. Hum. Toxicol. 1993, 35: 495–500.

    CAS  PubMed  Google Scholar 

  28. Domingo J.L., Bosque M.A., Luna M., Corbella J. Prevention by Tiron (sodium 4,5-dihydroxybenzene-1,3-disulfonate) of vanadate induced developmental toxicity in mice. Teratology 1993, 48: 133–138.

    CAS  PubMed  Google Scholar 

  29. Rajagopalan K.V. Molybdenum - an essential trace element. Nutr. Rev. 1987, 45: 321–328.

    CAS  PubMed  Google Scholar 

  30. Fillat C., Rodriguez-Gil J.E., Guinovart J.J. Molybdate and tungstate act like vanadate on glucose metabolism in isolated hepatocytes. Biochem. J. 1992, 282: 659–663.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Goto Y., Kida K., Ikeuchi M., Kaino Y., Matsuda H. Synergism in insulin-like effects of molybdate plus H2O2 or tungstate plus H2O2 on glucose transport by isolated rat adipocytes. Biochem. Pharm. 1992, 44: 174–177.

    CAS  PubMed  Google Scholar 

  32. Mooney R.A., Bordwell K.L. Differential dephosphorylation of the insulin receptor and its 160-kDA substrate (pp160) in rat adipocytes. J. Biol. Chem. 1992, 267: 14054–14060.

    CAS  PubMed  Google Scholar 

  33. Ozcelikay A.T., Becker D.J., Ongemba L.N., Pottier A., Henquin J., Brichard S.M. Improvement of glucose and lipid metabolism in diabetic rats treated with molybdate. Am. J. Physiol. Endocrinol. Metab. 1996, 270: E344–E352.

    CAS  Google Scholar 

  34. Li J., Elberg G., Gefel D., Shechter Y. Permolybdate and pertungstate - potent stimulators of insulin effects in rat adipocytes. Mechanism of action. Biochemistry 1995, 34: 6218–6125.

    CAS  PubMed  Google Scholar 

  35. Matsumoto J. Vanadate, molybdate and tungstate for orthomolecular medicine. Med. Hypotheses 1994, 43: 177–182.

    CAS  PubMed  Google Scholar 

  36. Barbera A., Fernandez-Alverez J., Truc A., Gomis R., Guinovart J.J. Effects of tungstate in neonatally streptozotocin-induced diabetic rats: mechanism leading to normalization of glycemia. Diabetologia 1997, 40: 143–149.

    CAS  PubMed  Google Scholar 

  37. Fursinn C., Englisch R., Ebner K., Nowotny P., Volg C., Waldhausl W. Insulin-like vs. non-insulin-like stimulation of glucose metabolism by vanadinium, tungstate and selenium compounds in rat muscle. Life Sci. 1996, 59: 1989–2000.

    Google Scholar 

  38. Jonas J.C., Henquin J.C. Possible involvement of a tyrosine kinase-dependent pathway in the regulation of phosphoinositide metabolism by vanadate in normal mouse islets. Biochem. J. 1996, 315: 49–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Barbera A., Rodriguez-Gil J.E., Guinovart J.J. Insulin-like actions of tungstate in diabetic rats: normalization of hepatic glucose metabolism. J. Biol. Chem. 1994, 269: 20047–20053.

    CAS  PubMed  Google Scholar 

  40. Anderson R.A. Chromium and parental nutrition. Nutrition 1995, 11: 83–86.

    Google Scholar 

  41. Lee N.A., Reasner C.A. Beneficial effect of chromium supplementation on serum triglyceride levels in NIDDM. Diabetes Care 1994, 17: 1449–1452.

    CAS  PubMed  Google Scholar 

  42. Hendricks D.G., Mahoneu A.W. Glucose tolerance in Zn2+ deficient rats. J. Nutr. 1972, 102: 1079–1084.

    CAS  PubMed  Google Scholar 

  43. Donaldson D.L., Smith C.C., Walker M.S., Rennert O.M. Tissue zinc and copper levels in diabetic C57BL/KsJ (db/db) mice fed a zinc-deficient diet: lack of evidence for specific depletion of tissue zinc stores. J. Nutr. 1988, 118: 1502–1508.

    CAS  PubMed  Google Scholar 

  44. Haglund B., Ryckenberg K., Selenius O., Dahlquist G. Evidence of a relationship between childhood-onset Type 1 diabetes and low groundwater concentrations of zinc. Diabetes Care 1996, 19: 873–875.

    CAS  PubMed  Google Scholar 

  45. Kinlaw W.B., Levine A.S., Morley J.E., McClain C.J. Abnormal Zn2+ metabolism in type II diabetes melltus. Am. J. Med. 1983, 75: 273–177.

    CAS  PubMed  Google Scholar 

  46. Sprietsma J.E., Schuitemaker G.E. Diabetes can be prevented by reducing insulin production. Med. Hypotheses 1994, 42: 15–23.

    CAS  PubMed  Google Scholar 

  47. Faure P., Roussel A., Coundray C., Richard M.J., Halimi S., Favier A. Zinc and insulin sensitivity. Biol. Trace Elem. Res. 1992, 32: 305–310.

    CAS  PubMed  Google Scholar 

  48. Shisheva A., Gefel D., Shechter Y. Insulinlike effects of zinc ion in vitro and in vivo. Preferential effects on desensitized adipocytes and induction of normoglycemia in streptozocin-induced rats. Diabetes 1992, 41: 982–988.

    CAS  PubMed  Google Scholar 

  49. Becker D.J., Reul B., Ozvelikay A.T., Buchet J.P., Henquin J.C., Brichard S.M. Oral selenate improves glucose homeostasis and partly reverses abnormal expression of liver glycolytic and gluconeogenic enzymes in diabetic rats. Diabetologia 1996, 39: 3–11.

    CAS  PubMed  Google Scholar 

  50. Ghosh R., Mukherjee B., Chatterjee M. A novel effect of selenium on streptozotocin-induced diabetic mice. Diabetes Res. 1994, 25: 165–171.

    CAS  PubMed  Google Scholar 

  51. Eibl N.L., Kopp H.P., Nowak H.R., Schnack C.J., Hopmier P.G., Schernthaner G. Hypomagnesemia in type II diabetes: effect of 3-month replacement therapy. Diabetes Care 1995, 18: 188–192.

    CAS  PubMed  Google Scholar 

  52. Balon T.W., Gu J.L., Tokuyama Y., Jasman A.P., Nadler J.L. Magnesium supplementation reduces development of diabetes in a rat model of spontaneous NIDDM. Am. J. Physiol. Endocrinol. Metab. 1995, 269: E745–E752.

    CAS  Google Scholar 

  53. Gorika F., Allegra A., Di Benedetto A., Giocobbe M.S., Romano G., Cucinotta D., Buemi M., Ceruso D. Effects of oral magnesium supplementation on plasma lipid concentrations in patients with non-insulindependent diabetes mellitus. Magnes. Res. 1994, 7: 43–47.

    Google Scholar 

  54. American Diabetes Association. Magnesium supplementation in the treatment of diabetes. Diabetes Care 1992, 15: 1065–1067.

    Google Scholar 

  55. Saltiel A.R., Olefsky J.M. Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes 1996, 45: 1661–1669.

    CAS  PubMed  Google Scholar 

  56. Tominaga M., Igarashi M., Daimon M., Eguchi H., Matsumoto M., Sekikawa A., Yamatomi K., Sasaki H. Thiazolidinediones (AD4533 and CS-045) improve hepatic insulin resistance in streptozotocin-induced diabetic rats. Endocr. J. 1993, 40: 343–349.

    CAS  PubMed  Google Scholar 

  57. Young P.W., Buckle D.R., Cantello B.C., Chapman H., Clapham J.C., Coyle P.J., Haigh D., Hindley R.M., Holder J.C., Kallender H., Latter A.J., Lawrie K.W.M., Mossakowska D., Murphy G.J., Roxbee C.L., Smith S.A. Identification of high-affinity binding sites for the insulin sensitizer rosiglitazone (BRL49653) in rodent and human adipocytes using a radioiodinated ligand for peroxisomal proliferator-activated receptor gamma. J. Pharmacol. Exp. Ther. 1988, 284: 751–759.

    Google Scholar 

  58. Ishizuka T., Itaya S., Wada H., Ishizawa M., Kimura M., Kajita K., Kanoh Y., Miura A., Muto N., Yasuda K. Differential effect of the antidiabetic thiazolidinediones troglitazone and pioglitazone on human platelet aggregation mechanism. Diabetes 1998, 47: 1494–1500.

    CAS  PubMed  Google Scholar 

  59. Balfour J.A., Plosker G.L. Rosiglitazone. Drugs 1999, 57: 921–932.

    CAS  PubMed  Google Scholar 

  60. Bloomgarden Z.T. American Diabetes Association Annual Meeting 1996: The etiology of type II diabetes, obesity, and the treatment of type II diabetes. Diabetes Care 1996, 19: 1311–1315.

    CAS  PubMed  Google Scholar 

  61. Suter S.L., Nolan J.J., Wallace P., Gumbiner B., Olefsky J.M. Metabolic effects of a new oral hypoglycemic agent CS-045 in NIDDM subjects. Diabetes Care 1992, 15: 193–203.

    CAS  PubMed  Google Scholar 

  62. Nolan J.J., Ludvik B., Ludvik M., Beerdsen P., Joyce M., Olefsky J.M. Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N. Engl. J. Med. 1994, 331: 1188–1193.

    CAS  PubMed  Google Scholar 

  63. Inzucchi S.E., Maggs D.G., Spollett G.R., Page S.L., Rife F.S., Walton V., Shulman G.I. Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. N. Engl. J. Med. 1998, 338: 867–872.

    CAS  PubMed  Google Scholar 

  64. Troglitazone Study Group. The metabolic effects of troglitazone in non-insulin dependent diabetes. Diabetes 1997, 46 (Suppl. 1): 149A (Abstract).

    Google Scholar 

  65. Ott P., Ranek L., Young M.A. Pharmacokinetics of troglitazone, a PPAR-gamma agonist, in patients with hepatic insufficiency. Eur. J. Clin. Pharmacol. 1998, 54: 567–571.

    CAS  PubMed  Google Scholar 

  66. Digby J.E., Montangue C.T., Seweter C.P., Sanders L., Wilkinson W.O., O’Rahilly S., Prins J.B. Thazolidinedione exposure increases the expression of uncoupling protein 1 in cultured adipocytes. Diabetes 1998, 47: 138–141.

    CAS  PubMed  Google Scholar 

  67. Kelly I.E., Han T.S., Walsh K., Lean M.E.J. Effects of a thiazolidinedione compound on body fat and fat distribution of patients with Type 2 diabetes. Diabetes Care 1999, 22: 288–193.

    CAS  PubMed  Google Scholar 

  68. Wang M., Wise S.C., Leff T., Su T.Z. Troglitazone, an antidiabetic agent, inhibits cholesterol biosynthesis through a mechanism independent of perixosome proliferator-activated receptor gamma. Diabetes 1999, 48: 254–260.

    CAS  PubMed  Google Scholar 

  69. Peraldi P., Xu M., Spiegelman B.M. Thiazolidinediones block tumor necrosis factor-alpha-induced inhibition of insulin signaling. J. Clin. Invest. 1997, 100: 1863–1869.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Kruzynska Y.T., Mukherjee R., Jow L., Dana S., Paterniti J.R., Olefsky J.M. Skeletal muscle peroxisome proliferator-activated receptor-gamma expression in obesity and non insulin-dependent diabetes mellitus. J. Clin. Invest. 1998, 101: 543–548.

    Google Scholar 

  71. Burant C.F., Sreenan S., Hirano K., Tai T.A., Lohmiller J., Luckens J., Davidson N.O., Ross S., Graves R.A. Troglitazone action is independent of adipose tissue. J. Clin. Invest. 1997, 100: 2900–2908.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Saku K., Zhang B., Ohta T., Arakawa K. Troglitazone lowers blood pressure and enhances insulin sensitivity in Watanabe heritable hyperlipidemic rabbits. Am. J. Hypertens. 1997, 10: 1027–1033.

    CAS  PubMed  Google Scholar 

  73. Lew R.E., Meehan W.P., Xi X.P., Graf K., Wuthrich D.A., Coats W., Faxon D., Hsueh W.A. Troglitazone inhibits vascular smooth muscle cell growth and intimal hyperplasia. J. Clin. Invest. 1996, 98: 1897–1905.

    Google Scholar 

  74. Cavaghan M.K., Ehrmann D.A., Byrne M.M., Polonsky K.S. Treatment with the oral antidiabetic agent troglitazone improves beta cell responses to glucose in subjects with impaired glucose tolerance. J. Clin. Invest. 1997, 100: 530–537.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Dunaif A., Scott D., Finegood D., Quintana B., Whitcomb R. The insulin-sensitizing agent troglitazone improves metabolic and reproductive abnormalities in the polycistic ovary syndrome. J. Clin. Endocrinol. Metab. 1996, 81: 3299–3306.

    CAS  PubMed  Google Scholar 

  76. Mizutani T., Yoshida K., Kawazoe S. Formation of toxic metabolites from thiabendazole and other thiazoles in mice. Identification of thioamides as ring cleavage products. Drug Metab. Dispos. 1994, 22: 750–755.

    CAS  PubMed  Google Scholar 

  77. Shimabukuro M., Higa S., Shinzato T., Nagamine F., Komiya I., Takasu N. Cardioprotective effects of troglitazone in streptozotocin-induced diabetic rats. Metabolism 1996, 45: 1168–1173.

    CAS  PubMed  Google Scholar 

  78. Neuschwander-Tetri B.A., Isley W.L., Oki J.C., Ramrakhani S., Quiason S.G., Philipps N.J., Brunt E.M. Troglitazone-induced hepatic failure leading to liver transplantation. Ann. Intern. Med. 1998, 129: 38–41.

    CAS  PubMed  Google Scholar 

  79. Imura H. A novel antidiabetic drug, troglitazone. Reason for hope and concern. N. Engl. J. Med. 1998, 338: 908–909.

    CAS  PubMed  Google Scholar 

  80. Schoonjans K., Peidado-Onsbure J., Lefebvre A.M., Heyman R.A., Briggs M., Deeb S., Staels B., Auwerx J. PPAR-alpha and PPAR-gamma activators direct a distint tissues-specific transcriptional response via PPRE in the lipoprotein lipase gene. EMBO J. 1996, 15: 5336–5348.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Kanoh Y., Bandyopadhyay G., Sajan M.P., Standaert M.L., Farese R.V. Thiazolidinedione treatment enhances insulin effects on protein kinase C-zeta/lambda activation and glucose transport in adipocytes of nondiabetic and Goto-Kakizaki type II diabetic rats. J. Biol. Chem. 2000, 275(22): 16690–16696.

    CAS  PubMed  Google Scholar 

  82. Gomis R., Jones N.P., Vallace S.E., Patwardhan R. Low-dose rosiglitazone (RSG) provides additional glycemic control when combined with sulfonylureas in Type 2 diabetes (T2D). ADA 1999 Annual Meeting. Abstract.

    Google Scholar 

  83. Souza S.C., Yamamoto M.T., Franciosa M.D., Lien P., Greenberg A.S. BRL 49653 blocks the lipolytic actions of tumor necrosis factor-alpha: a potential new insulin-sensitizing mechanism for thiazolidinediones. Diabetes 1998, 47: 691–695.

    CAS  PubMed  Google Scholar 

  84. Food and Drug Administration Endocrinologic and Metabolic Drugs Advisory Committe. April 22, 1999.

  85. Chaput E., Saladin R., Silvestre M., Edgar A.D. Fenofibrate and rosiglitazone lower serum triglycerides with opposing effects on body weight. Biochem. Biophys. Res. Commun. 2000, 271: 445–450.

    CAS  PubMed  Google Scholar 

  86. Rosiglitazone package insert. SmithKline Beecham.

  87. Walker A.B., Chattington P.D., Buckingham R.E., Williams G. The thiazolidinedione rosiglitazone (BRL49653) lowers blood pressure and protects against impairment of endothelial function in Zucker fatty rats. Diabetes 1999, 48: 1448–1453.

    CAS  PubMed  Google Scholar 

  88. Yamasaki Y., Kawamori R., Wasada T., Sato A., Omori Y., Eguchi H., Tominaga M., Sasaki H., Ikeda M., Kubota M., Ishida Y., Hozumi T., Baba S., Uehara M., Shichiri M., Kaneko T. Pioglitazone (AD4833) ameliorates insulin resistance in patients with NIDDM. AD4833 Glucose Clamp Study Group, Japan. Tohoku J. Exp. Med. 1997, 183: 173–183.

    CAS  PubMed  Google Scholar 

  89. Matsuhisa M., Shi Z.Q., Wan C., Lekas M., Rodgers C.D., Giacca A., Kawamori R., Vranic M. The effect of pioglitazone on hepatic glucose uptake measured with indirect and direct methods in alloxan-induced diabetic dogs. Diabetes 1997, 46: 224–131.

    CAS  PubMed  Google Scholar 

  90. Fulgencio J.P., Kohl C., Girard J., Pegorier J.P. Troglitazone inhibits fatty acid oxidation and esterification and gluconeogenesis in isolated hepatocytes from starved rats. Diabetes 1996, 45: 1556–1562.

    CAS  PubMed  Google Scholar 

  91. Ohtani K., Shimuzu H., Tanaka Y., Sata N., Mori M. Pioglitazone hydrocloride stimulates insulin secretion in HIT-T 15 cells by inducing Ca2+ influx. J. Endocrinol. 1996, 150: 107–111.

    CAS  PubMed  Google Scholar 

  92. Buchanan T.A., Meehan W.P., Jeng D., Chan T.M., Nadler J.L., Scott S., Rude R.K., Hsueh W.A. Blood pressure lowering by pioglitazone. Evidence for a direct vascular effect. J. Clin. Invest. 1995, 96: 354–360.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Lohray B.B., Bhushan V., Rao B.P., Madhavan G.R., Murali N., Rao K.N., Reddy A.K., Rajesh B.M., Reddy P.G., Chakrabarti R., Vikramadithyan R.K., Rajagopalan R., Mamidi R.N., Jajoo H.K., Subramaniam S. Novel euglycemic and hypolipidemic agents. J. Med. Chem. 1998, 41: 1619–1630.

    CAS  PubMed  Google Scholar 

  94. Anonymous. New drug overview. Pioglitazone hydrochloride. Am. J. Health Syst. Pharm. 2000, 57: 124–125.

    Google Scholar 

  95. Berger J., Bailey P., Biswas C., Cullinan C.A., Doebber T.W., Hayes N.S., Saperstein R., Smith R.G., Leibowitz M.D. Thiozolidines produces a conformational change in peroxisomal proliferator-activated receptor-gamma: binding and activation correlate with antidiabetic actions in db/db mice. Endocrinology 1996, 137: 4189–4195.

    CAS  PubMed  Google Scholar 

  96. Berger J., Biswas C., Hayes N., Ventre J., Wu M., Doebber T.W. An antidiabetic thiazolidinedione potentiates insulin stimulation of glycogen synthase in rat adipose tissue. Endocrinology 1996, 137: 1984–1990.

    CAS  PubMed  Google Scholar 

  97. Zhang B., Graziano M.P., Doebber T.W., Leibowitz M.D., White-Carrington S., Szalkowski D.M., Hey P.J., Wu M., Cullinan C.A., Bailey P., Lollmann B., Frederich R., Flier J.S., Strader C.D., Smith R.G. Down-regulation of the expression of the obese gene by an antidiabetic thiazolidinedione in Zucker diabetic fatty rats and db/db mice. J. Biol. Chem. 1996, 271: 9455–9459.

    CAS  PubMed  Google Scholar 

  98. Camirand A., Marie V., Rabelo R., Silva J.E. Thiazolidinediones stimulate uncoupling protein-2 expression in cell lines representing white and brown adipose tissues and skeletal muscle. Endocrinology 1998, 139: 428–431.

    CAS  PubMed  Google Scholar 

  99. Chaiken R.L., Eckert-Norton M., Pasmantier R., Boden G., Ryan I., Gelfand R.A., Lebovitz H.E. Metabolic effects of darglitazone, an insulin sensitizer, in NIDDM subjects. Diabetologia 1995, 38: 1307–1312.

    CAS  PubMed  Google Scholar 

  100. Stevenson R.W., Mc Person R.K., Persson L.M., Generoux P.E., Swick A.G., Spitzer J., Herbest J.J., Andrews K.M., Kreutter D.K., Gibbs E.M. The antihyperglycemic agent englitiazone prevents the deefect in glucose transport in rats fed a highfat diet. Diabetes 1996, 45: 60–66.

    CAS  PubMed  Google Scholar 

  101. Sarges R., Hank R.E., Blake J.F., Bordner J., Bussolotti D.L., Hargorove D.M., Treadway B., Gibbs E.M. Glucose transport-enhacing and hypoglycemic activity of 2-methyl-2-phenoxy-3-phenylproppanoic acids. J. Med. Chem. 1996, 39: 4783–4803.

    CAS  PubMed  Google Scholar 

  102. Adams M.D. Raman P. Judd R.L. Comparative effects of englitazone and glyburide on gluconeogenesis and glycolysis in the isolated perfused rat liver. Biochem. Pharmacol. 1998, 55: 1915–1920.

    CAS  PubMed  Google Scholar 

  103. Rowe I.C., Lee K., Khan R.N., Ashford M.L. Effect of englitiazone on K+-ATP and calcium-activated non-selective cation channels in CRI-G1 insulin secreting cells. Br. J.Pharmacol. 1997, 121: 531–539.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Pershadsingh H.A., Szollosi J., Benson S., Hyun W.C., Feuerstein B.G., Kurtz T.W. Effects of ciglitazone on blood pressure and intracellular calcium metabolism. Hypertension 1993, 21: 1020–1023.

    CAS  PubMed  Google Scholar 

  105. Morikang E., Benson S., Kurtz T.W., Pershadsingh H.A. Effects of thiazolidinediones on growth and differentiation of human aorta and coronary myocites. Am. J. Hypertens. 1997, 10: 440–446.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Perfetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perfetti, R., Chamie, K. Enhancing insulin action: From chemical elements to thiazolidinediones. J Endocrinol Invest 24, 274–287 (2001). https://doi.org/10.1007/BF03343858

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03343858

Key-words

Navigation