Abstract
The purpose of this study was to compare thyroid hormone metabolism between non-cancerous tumor-surrounding human kidney tissues and renal clear cell carcinomas (RCCC). The material consisted of samples taken from 10 RCCC patients of both sexes and three grades of differentiation, G1 to G3. We showed that, similar to rat tissue, type I 5′ monodeiodinase (5′DI) expression is heterogeneous within the human kidney. We also found a poor correlation between 5′DI activity and mRNA level in noncancerous tumor-surrounding tissue suggesting significant post-transcriptional regulation of 5′DI expression by an unidentified process in the human kidney. In all RCCC tissues both 5′DI activity and mRNA levels were undetectable. This suggests either loss of human 5′DI gene expression during neoplastic transformation or the origination of RCCC from a tubular cell type that does not express 5′DI.
Similar content being viewed by others
References
Silva J. E. Thyroid hormone control of thermogenesis and energy balance. Thyroid 1995, 5: 481–492.
Legrand J. Thyroid hormone effects on growth and development. In: G. Hennemann (Ed.), Thyroid hormone metabolism. Marcel Dekker Inc., New York, 1986, p. 503.
Dubuis I.M., Glorieux J., Richer F., Deal C.L., Dussault J.H., Van Vliet G. Outcome of severe congenital hypothyroidism: closing the developmental gap with early high dose levothyroxine treatment. J. Clin. Endocrinol. Metab. 1996, 81: 222–227.
Chatterjee V.K.K., Tata J.R. Thyroid hormone receptors and their role in development. Cancer Surv. 1992, 14: 147–167.
St. Germain D.L. Development effects of thyroid hormone: the role of deiodinases in regulatory control. Biochem. Soc. Trans. 1999, 27: 83–88.
Mellemgaard A., From G., Jorgensen T., Johansen C., Olsen J. H., Perrild H. Cancer risk in individuals with benign thyroid disorders. Thyroid 1998, 8: 751–754.
Borek C., Guernsey D.L., Ong A., Edelman I.S. Critical role played by thyroid hormone in induction of neoplastic transformation by chemical carcinogens in tissue culture. Proc. Natl. Acad. Sci. USA 1983, 80: 5749–5752.
Guernsey D.L., Borek C., Edelman I.S. Crucial role of thyroid hormone in x-ray-induced neoplastic transformation in cell culture. Proc. Natl. Acad. Sci. USA 1981, 78: 5708–5711.
Humes H.D., Cieslinski D.A., Johnson L.B., Sanchez I.O. Triiodothyronine enhances renal tubule cell replication by stimulating EGF receptor gene expression. Am. J. Physiol. Endocrinol. Metab. 1992, 262: F540–545.
St. Germain D.L., Galton V.A. The deiodinase family of selenoproteins. Thyroid 1997, 7: 655–668.
St. Germain D.L. Iodothyronine deiodinases. Trends Endocrinol. Metab. 1994, 5: 36–42.
Kohrle J. Thyroid hormone deiodinases–a selenoenzyme family acting as gate keepers to thyroid hormone action. Acta Med. Austriaca 1996, 23: 17–30.
Moreno M., Berry M.J., Horst C., Thoma R., Goglia F., Harney J.W., Larsen P.R., Visser T.J. Activation and inactivation of thyroid hormone by type I iodothyronine deiodinase. FEBS Lett. 1994, 344: 143–146.
Safran M., Leonard J.L. Comparison of the physicochemical properties of type I and type II iodothyronine 5′-deiodinase. J. Biol. Chem. 1991, 266: 3233–3238.
Nguyen T.T., Chapa F., DiStefano J.J. 3rd Direct measurement of the contributions of type I and type II 5′-deiodinases to whole body steady state 3,5,3′-triiodothyronine production from thyroxine in the rat. Endocrinology 1998, 139: 4626–4633.
Leonard J.L., Koehrle J. Intracellular pathways of iodothyronine metabolism. In: Braverman L.S., Utiger R.D. (Eds.), The thyroid. Lippincott-Raven, Philadelphia, New York, 1996, p. 125.
Yoshida K., Sakurada T., Kitaoka H., Fukazawa H., Kaise N., Kaise K., Yamamoto M., Suzuki M., Saito S., Yoshinaga K., Kimura S., Yamanaka M. Monodeiodination of thyroxine to 3,3′,5-triiodothyronine and 3,3′,5′-triiodothyronine in human kidney homogenate. Nippon Naibunpi Gakkai Zasshi 1982, 58: 199–209.
Boye N. Thyroxine monodeiodination in normal human kidney tissue in vitro. Acta Endocrinol. (Copenh.) 1986, 112: 536–540.
Mandel S.J., Berry M.J., Kieffer J.D., Harney J.W., Warne R.L., Larsen P.R. Cloning and in vitro expression of the human selenoprotein, type I iodothyronine deiodinase. J. Clin. Endocrinol. Metab. 1992, 75: 1133–1139.
Storkel S., van den Berg E. Morphological classification of renal cancer. World J. Urol. 1995, 13: 153–158.
Nauman A., Nauman J., Witeska A., Dutkiewicz S. 5′-deiodinase type I in human kidney cancer. J. Endocrinol. Invest. 1993, 16: 76 (Abstract).
Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72: 248–254.
Leonard J.L., Rosenberg I.N. Iodothyronine 5′-deiodinase from rat kidney: substrate specificity and the 5′-deiodination of reverse triiodothyronine. Endocrinology 1980, 107: 1376–1383.
Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987, 162: 156–159.
Sabatino L., Chopra I.J., Iervasi G., Ferrazzi P., Vanini V., Francesconi D. A Study of iodothyronine 5′-monodeiodinase activities in normal and pathological tissues in man and their comparison with activities in rat tissues. 72nd Annual Meeting of the American Thyroid Association, Palm Beach, Florida, 1999, 81 (Abstract).
Nishikawa M., Toyoda N., Yonemoto T., Ogawa Y., Tabata S., Sakaguchi N., Tokoro T., Gondou A., Yoshimura M., Yoshikawa N., Inada M. Quantitative measurements for type 1 deiodinase messenger ribonucleic acid in human peripheral blood mononuclear cells: mechanism of the preferential increase of T3 in hyperthyroid Graves’ disease. Biochem. Biophys. Res. Commun. 1998, 250: 642–646.
Winzer R., Schmutzler C., Jakobs T.C., Ebert R., Rendl J., Reiners C., Jakob F., Kohrle J. Reverse transcriptase-polymerase chain reaction analysis of thyrocyte-relevant genes in fine-needle aspiration biopsies of the human thyroid. Thyroid 1998, 8: 981–987.
Berry M.J., Banu L., Chen Y.Y., Mandel S.J., Kieffer J.D., Harney J.W., Larsen P.R. Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3′ untranslated region. Nature 1991, 353: 273–276.
Oertel M., Gross M., Rokos H., Kohrle J. Selenium-dependent regulation of type I 5′-deiodinase expression. Am. J. Clin. Nutr. 1993, 57: 313S–314S.
Kohrle J. Thyroid hormone deiodination in target tissues — a regulatory role for the trace element selenium? Exp. Clin. Endocrinol. 1994, 102: 63–89.
Linehan W.M., Lerman M.I., Zbar B. Identification of the von Hippel-Lindau (VHL) gene. Its role in renal cancer. JAMA 1995, 273: 564–570.
Kohrle J., Rasmussen U.B., Ekenbarger D.M., Alex S., Rokos H., Hesch R.D., Leonard J.L. Affinity labeling of rat liver and kidney type I 5′-deiodinase. Identification of the 27-kDa substrate binding subunit. J. Biol. Chem. 1990, 265: 6155–6163.
Toyoda N., Zavacki A.M., Maia A.L., Harney J.W., Larsen P.R. A novel retinoid X receptor-independent thyroid hormone response element is present in the human type 1 deiodinase gene. Mol. Cell. Biol. 1995, 15: 5100–5112.
Zhang C.Y., Kim S., Harney J.W., Larsen P.R. Further characterization of thyroid hormone response elements in the human type 1 iodothyronine deiodinase gene. Endocrinology 1998, 139: 1156–1163.
Jakobs T.C., Schmutzler C., Meissner J., Kohrle J. The promoter of the human type I 5′-deiodinase gene — mapping of the transcription start site and identification of a DR+4 thyroid-hormone-responsive element. Eur. J. Biochem. 1997, 247: 288–297.
Puzianowska-Kuznicka M., Nauman A., Madej A., Tanski Z., Cheng S., Nauman J. Expression of thyroid hormone receptors is disturbed in human renal clear cell carcinoma. Cancer Lett. 2000, 155: 145–152.
Nauman A., Puzianowska-Kuznicka M., Tanski Z., Ouczak J., Cheng S.-Y., Nauman J. Expression and function of thyroid hormone receptor (TR) in human clear cell kidney cancer. 1st Annual Meeting of the American Thyroid Association, Portland, Oregon, 1998, 95 (Abstract).
Latchman D.S. Transcription-factor mutations and disease. N. Engl. J. Med. 1996, 334: 28–33.
Latif F., Tory K., Gnarra J., Yao M., Duh F.M., Orcutt M.L., Stackhouse T., Kuzmin I., Modi W., Geil L., et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 1993, 260: 1317–1320.
Cohen H. T., Zhou M., Welsh A.M., Zarghamee S., Scholz H., Mukhopadhyay D., Kishida T., Zbar B., Knebelmann B., Sukhatme V.P. An important von Hippel-Lindau tumor suppressor domain mediates Sp1- binding and self-association. Biochem. Biophys. Res. Commun. 1999, 266: 43–50.
Davies P.H., Sheppard M.C., Franklyn J.A. Regulation of type I 5′-deiodinase by thyroid hormone and dexamethasone in rat liver and kidney cells. Thyroid 1996, 6: 221–228.
Kohrle J. Thyrotropin (TSH) action on thyroid hormone deiodination and secretion: one aspect of thyrotropin regulation of thyroid cell biology. Horm. Metab. Res. Suppl. 1990, 23: 18–28.
Schreck R., Schnieders F., Schmutzler C., Kohrle J. Retinoids stimulate type I iodothyronine 5′-deiodinase activity in human follicular thyroid carcinoma cell lines. J. Clin. Endocrinol. Metab. 1994, 79: 791–798.
Davies P.H., Sheppard M.C., Franklyn J.A. Inflammatory cytokines and type I 5′-deiodinase expression in phi1 rat liver cells. Mol. Cell. Endocrinol. 1997, 129: 191–198.
Hashimoto H., Igarashi N., Miyawaki T., Sato T. Effects of tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6 on type I iodothyronine 5′- deiodination in rat thyroid cell line, FRTL-5. J. Interferon. Cytokine Res. 1995, 15: 367–375.
Pekary A.E., Chopra I.J., Berg L., Hershman J.M. Sphingomyelinase and phospholipase A2 regulate type I deiodinase expression in FRTL-5 cells. Thyroid 1997, 7: 647–654.
Leonard J.L., Ekenbarger D.M., Frank S.J., Farwell A.P., Koehrle J. Localization of type I iodothyronine 5′-deiodinase to the basolateral plasma membrane in renal cortical epithelial cells. J. Biol. Chem. 1991, 266: 11262–11269.
Murayama N., Yoshida K., Torikai S., Sakurada T., Asano Y., Yoshinaga K. Localization of thyroxine 5′-monodeiodinase activity in the renal proximal tubules in rabbits and rats. Horm. Metab. Res. 1985, 17: 197–200.
Yoshida K., Sakurada T., Kitaoka H., Fukazawa H., Kaise N., Kaise K., Yamamoto M., Saito S., Yoshinaga K. Monodeiodination of thyroxine to 3,5,3′-triiodothyronine and to 3,3′,5′-triiodothyronine in isolated dog renal cortical tubuli. Endocrinol. Jpn. 1983, 30: 211–217.
Lee W.S., Berry M.J., Hediger M.A., Larsen P.R. The type I iodothyronine 5′-deiodinase messenger ribonucleic acid is localized to the S3 segment of the rat kidney proximal tubule. Endocrinology 1993, 132: 2136–2140.
St.Germain D.L., Croteau W. Ligand-induced inactivation of Type I iodothyronine 5′-deiodinase: protection by propylthiouracil in vivo and reversibility in vitro. Endocrinology 1989, 125: 2735–2744.
Goswami A., Rosenberg I.N. Regulation of iodothyronine 5′-deiodinases: effects of thiol blockers and altered substrate levels in vivo and in vitro. Endocrinology 1990, 126: 2597–2606.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pachucki, J., Ambroziak, M., Tanski, Z. et al. Type I 5′-iodothyronine deiodinase activity and mRNA are remarkably reduced in renal clear cell carcinoma. J Endocrinol Invest 24, 253–261 (2001). https://doi.org/10.1007/BF03343855
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF03343855