Skip to main content
Log in

Age and gender specific stimulation of creatine kinase specific activity by gonadal steroids in human bone-derived cells in culture

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

We previously reported a non-enzymatic method for isolation of human bone cells in culture that display osteoblastic features and respond to 1,25 dihydroxy vitamin D (1,25) and to parathyroid hormone (PTH). The present study was undertaken to analyze the response of cultured human bone cells to 17gB-estradiol (E2) and to dihydrotestosterone (DHT) as a function of gender and age. Cultured human bone cells, obtained from biopsies during orthopedic surgery, were divided into four groups defined by gender and age: pre- and post-menopausal healthy non-osteoporotic women that were not under hormone replacement therapy (HRT) and mature (<55-year-old) and older (>60-year-old) men. We found gender specific responses to gonadal steroids using the specific activity of the brain type (BB) isozyme of creatine kinase (CK) as a response marker. Constitutive levels of CK activity did not change with age or gender and the enzyme extracted from cells from the different sexes and ages did not respond to either progesterone (P) or to 1,25. CK from the different cells responded to gonadal steroids in a gender specific manner, i.e. CK from female derived cells responded to E2 only and the enzyme from male derived cells responded to DHT only. In female derived cells the response to E2 declined significantly with age, while the response to DHT in CK from male derived cells did not vary with age. This may be due to either decreased proportion of mature osteoblasts and/or their differentiation state and/or changes in the levels of estrogen receptor(s), coactivators or corepressors in these cells. These results extend our knowledge of human osteoblast biology (beyond murine cells) and are therefore more relevant for developing models for treatment of human metabolic bone diseases such as post-menopausal osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christiansen C. Hormonal prevention and treatment of osteoporosis. State of art. J. Steroid Biochem. Mol. Biol. 1991, 6: 1124–1130.

    Google Scholar 

  2. Gallagher J.C. The pathogenesis of osteoporosis. Bone Miner. 1990, 9: 215–227.

    Article  CAS  PubMed  Google Scholar 

  3. Lindsay R. Sex steroids in the pathogenesis and prevention of osteoporosis. In: Riggs B.L., Melton III L.J. (Eds.), Osteoporosis: Etiology, diagnosis, and management. Raven Press, New-York, 1988, p. 333.

    Google Scholar 

  4. Peck W.A. Osteoporosis and estrogen deprivation. Experimental approaches to therapy: an overview. Postgrad. Med. 1987, 253: 33–34.

    Google Scholar 

  5. Lukert B.P., Johnson B.E., Robison R.G. Esterogen and progesterone replacement therapy reduces glucocorticoid-induced bone loss. Bone Miner. 1992, 7: 1063–1069.

    Article  CAS  Google Scholar 

  6. Ebeling P.P. Osteoporosis in men. New insights into aetiology, pathogenesis, prevention and management. Drugs Aging 1998, 13: 421–434.

    Article  CAS  PubMed  Google Scholar 

  7. Smith E.P., Boyd J., Frank G.R., Takahashi H., Cohen R.M., Specker B., Williams T.C., Lubahn D.B., Korach K.S. Estrogen resistance caused by a mutation in the estrogen receptor gene in a man. N. Engl. J. Med. 1994, 331: 1056–1061.

    Article  CAS  PubMed  Google Scholar 

  8. Chen T.L., Feldman D. Distinction between alpha-fetoprotein and intracellular estrogen receptors: evidence against the presence of estradiol receptors in rat bone. Endocrinology 1978, 102: 236–244.

    Article  CAS  PubMed  Google Scholar 

  9. Caputo C.B., Meadow D., Raisz L.G. Failure of estrogens and androgens to inhibit bone resorption in tissue culture. Endocrinology 1976, 98: 1065–1068.

    Article  CAS  PubMed  Google Scholar 

  10. Van Passen H.C., Poortman J., Borgat-Creutzburg I. H.C., Thijssen J.H.H., Duursman S.A. Oestrogen binding proteins in bone cell cytosol. Calcif. Tissue Res. 1978, 25: 249–254.

    Article  Google Scholar 

  11. Komm B.S., Terpening C.M., Benz D.J., Graeme K. A., Gallegos A., Korc M., Greene G.L., O’Malley B.W., Haussler M.R. Estrogen binding, receptor mRNA and biological response in osteoblast-like osteosarcoma cells. Science 1998, 241: 81–84.

    Article  Google Scholar 

  12. Eriksen E.F., Colard D.S., Berg N.J., Graham M.L., Mann K.G., Spelberg T.C., Riggs B.L. Evidence of estrogen receptors in normal human osteoblast-like cells. Science 1988, 241: 84–86.

    Article  CAS  PubMed  Google Scholar 

  13. Ben-Hur H., Mor G., Blikstein I., Likhuman I., Kohen F., Dgani R., Insler V., Yaffe P., Ornoy A. Localization of estrogen receptors in long bones and vertebrae of human fetuses. Calcif. Tissue Int. 1993, 53: 91–96.

    Article  CAS  PubMed  Google Scholar 

  14. Ernst M., Schmid C., Froesch E.R. Enhanced osteoblast proliferation and collagen gene expression by estradiol. Proc. Natl. Acad. Sci. USA 1988, 8: 2307–2310.

    Article  Google Scholar 

  15. Gray T.K., Flynn T.C., Gray K.M., Nabell L.M. 17gB estradiol acts directly on the clonal osteoblast cell line UMR 106. Proc. Natl. Acad. Sci. USA 1987, 84: 854–857.

    Article  Google Scholar 

  16. Schevven B.A.A., Damen C.A., Hamilton N.J., Herhaar H.J.J., Duursma S.A. Stimulatory effects of estrogen and progesterone on proliferation and differentiation on normal human osteoblastic-like cells in vitro. Biochem. Biophys. Res. Commun. 1992, 186: 54–60.

    Article  Google Scholar 

  17. Colvard D.S., Eriksen E.F., Keeting P.E., Wilson E.M., Lubahn D.B., French F.S., Riggs B.L., Spelberf T.D. Identification of androgens receptors in normal human osteoblast-like cells. Proc. Natl. Acad. Sci. USA 1989, 86: 854–857.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Sömjen D., Weisman Y., Harell A., Berger E., Kaye A.M. Direct and sex-specific stimulation by sex steroids of creatine kinase activity and DNA synthesis in rat bone. Proc. Natl. Acad. Sci. USA 1989, 86: 3361–3365.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Sömjen D., Weisman Y., Mor Z., Harell A., Kaye A.M. Regulation of proliferation of rat cartilage and bone by sex steroid hormones. J. Steroid Biochem. Mol. Biol. 1991, 40: 717–723.

    Article  PubMed  Google Scholar 

  20. Tremollieres F.A., Strong D.D., Baylink D.J., Mohan S. Progesterone and promegesterone stimulate human bone cell proliferation and insulin-like growth factor-2 production. Acta Endocrinol. 1992, 126: 329–337.

    CAS  PubMed  Google Scholar 

  21. Wei L.L., Leach M.W., Miner R.S., Demers L.M. Evidence for progesterone receptors in human osteoblast- like cells. Biochem. Biophys. Res. Commun. 1993, 195: 525–532.

    Article  CAS  PubMed  Google Scholar 

  22. Malnick S.D.H., Shaer A., Soreq H., Kaye A.M. Estrogen induced creatine kinase in the reproductive system of the immature female rat. Endocrinology 1983, 119: 1907–1909.

    Article  Google Scholar 

  23. Kaye A.M., Weisman Y., Harell A., Sömjen D. Hormonal stimulation of bone proliferation. J. Steroid Biochem. Mol. Biol. 1990, 37: 431–435.

    Article  CAS  PubMed  Google Scholar 

  24. Kaye A.M., Reiss N.A., Weisman Y., Binderman I. Hormonal regulation of creatine kinase BB. In: N. Brautbar (Ed.), Myocardial and skeletal muscle bioenergetics. Plenum, New York, 1986, p. 83.

    Chapter  Google Scholar 

  25. Sömjen D., Kaye A.M., Binderman I. Stimulation of creatine kinase BB activity by parathyroid hormone and by prostaglandins in cultured bone cells. Biochem. J. 1985, 225: 591–596.

    PubMed Central  PubMed  Google Scholar 

  26. Kaye A.M., Kim T.-Y., Kohen F., Sömjen D. Anabolic effects of estrogen and parathyroid hormone on skeletal tissues: the use of creatine kinase B activity as a response marker. Arch. Gerontol. Geriatr. 1997, 24: 197–209.

    Article  CAS  PubMed  Google Scholar 

  27. Sömjen D., Mor Z., Kaye M. Age dependence and modulation by gonadoectomy of rat diaphyseal bone to gonadal ste-roids. Endocrinology 1994, 134: 809–814.

    PubMed  Google Scholar 

  28. Berger E. Control mechanisms in development of osteogenic and hematopoietic tissues and the use of irradiation to study them. Unpublished Ph.D. thesis, submitted to Tel-Aviv University, 1996.

    Google Scholar 

  29. Fouernier B., Haring S., Kaye A. M., Sömjen D. Stimulation of creatine kinase specific activity in human osteoblast and endometrial cells by estrogens and anti-estrogens and its modulation by calciotropic hormones. J. Endocrinol. 1996, 150: 275–285.

    Article  Google Scholar 

  30. Weisman Y., Jaccard N., Hefferan T., Robey P., Cassarola F., Kaye M.A., Sömjen D. Sex specific response of bone cells to sex steroids in vitro and its modification by prenatal androgenization. J. Bone Miner. Res. 1990, 5: S219.

    Google Scholar 

  31. Nasatzky E., Schwartz Z., Boyan B.D., Soskolne W.A., Ornoy A. Sex-dependent effects of 17-beta-estradiol on chondrocyte differentiation in culture. J. Cell Physiol. 1993, 154: 359–367.

    Article  CAS  PubMed  Google Scholar 

  32. Katzburg S., Lieberherr M., Ornoy A., Klein B.Y., Hendel D., Sömjen D. Isolation and hormonal responsiveness of primary cultures of human bone-derived cells: gender and age differences. Bone 1999, 25: 667–673.

    Article  CAS  PubMed  Google Scholar 

  33. Beresford J.N., Galaghar J.A., Russel R.G.G. Production of osteocalcin by human bone cells in vitro. Effects of 1,25(OH)2D3, Parathyroid hormone and glucocorticoids. Metab. Bone Dis. Rel. Res. 1984, 5: 229–234.

    Article  CAS  Google Scholar 

  34. Bradford M. A rapid and sensitive method for the quantification of microtram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  35. Ankrom M.A., Patterson J.A., d’Avis P.Y., Vetter U.K., Blackman M.R., Sponseller P.D., Tayback M., Gehron Robey P., Shapiro J.R., Fedarko N.S. Age-related changes in human oestrogen receptor a function and levels in osteoblasts. Biochem. J. 1998, 333: 787–794.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Onoe Y., Miyaura C., Ohta H., Nozawa S., Suda T. Expression of estrogen receptor beta in rat bone. Endocrynology 1997, 138: 4509–4512.

    CAS  Google Scholar 

  37. Longcope C. Adrenal and gonadal estrogen secretion in normal females. J. Endocrinol. Metab. 1986, 65: 213–228.

    Google Scholar 

  38. Kalu D.N., Salerno E., Liu C.C., Echon R., Ray M., Garza-Zapata M., Hollis B.W. A comparative study of the actions of tamoxifen, estrogen and progesterone in the ovariectomized rat. Bone Miner. 1991, 15: 109–124.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Somjen.

Additional information

In partial fulfillment of the requirements for a Ph.D. Thesis of the Hadassah Medical School, Hebrew University, Jerusalem.

This project was supported in part by private donation to D. Somjen in memory of the late Haim Ben-Yitzhaq

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katzburg, S., Ornoy, A., Hendel, D. et al. Age and gender specific stimulation of creatine kinase specific activity by gonadal steroids in human bone-derived cells in culture. J Endocrinol Invest 24, 166–172 (2001). https://doi.org/10.1007/BF03343837

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03343837

Key-words

Navigation