Administration of glutathione in patients with type 2 diabetes mellitus increases the platelet constitutive nitric oxide synthase activity and reduces PAI-1


Several studies suggest that nitric oxide (NO) production is impaired in diabetes mellitus. Reduced levels of NO could contribute to cardiovascular mortality. Furthermore, NO synthesis is impaired in glutathione (GSH)-depleted human umbilical vein endothelial cells and GSH is reduced in patients with type 2 diabetes mellitus (T2DM). We tested the hypothesis that treatment with GSH may improve platelet constitutive NO sinthase (cNOS) activity in patients with T2DM. Fifteen patients with T2DM underwent a treatment with GSH 600 mg/day im for 10 days. With respect to the basal values on the 10th day of treatment, the red blood cell GSH concentration and platelets cNOS increased (1.4±0.1 vs 1.9±0.1 μmol/1010 RBC, p<0.001 and 0.7±0.1 vs 2.9±0.2 fmol·min−1·10−9 PLTs, p<0.001, respectively) and the plasma PAI-1 levels diminished (81.4±3.7 vs 68.7±4.0 ng/ml, p<0.002). A negative correlation between the cNOS and the PAI-1 was found on the basal values. After a wash-out of 30 days the values of red blood cell GSH concentration, platelet cNOS activity and PAI-1 Ag returned to the basal levels. These data suggest that the administration of GSH, in patients with T2DM, is able to improve platelet cNOS activity together with a reduction of PAI-1.

This is a preview of subscription content, access via your institution.


  1. 1.

    Stamler J., Vaccaro O., Neaton J.D. Diabetes, other risk factors, and 12 yr cardiovascular mortality for men screened in the multiple risk factor intervention trial. Diabetes Care 1993, 16: 434–444.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Cosentino F., Luscher T.F. Endothelial disfunction in diabetes mellitus. J. Cardiovasc. Pharmacol. 1998, 32 (Suppl. 3): S54–S61.

    PubMed  CAS  Google Scholar 

  3. 3.

    Hayoz D., Ziegler T., Brunner H.R., Ruiz J. Diabetes mellitus and vascular lesions. Metabolism 1998, 47 (Suppl. 1): 16–19.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Watts G.F., Playford D.A. Dyslipoproteinemia and hyperoxidative stress in the pathogenesis of endothelial dysfunction in non-insulin dependent diabetes mellitus: an hypothesis. Atherosclerosis 1998, 14: 17–30.

    Article  Google Scholar 

  5. 5.

    Honing M.L., Morrison P.J., Banga J.D., Stroes E.S., Rabelink T.J. Nitric oxide availability in diabetes mellitus. Diabetes Metab. Rev. 1998, 14: 241–249.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Pieper G.M. Review of alterations in endothelial nitric oxide production in diabetes: protective role of arginine on endothelial disfunction. Hypertension 1998, 31: 1047–1060.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Veves A., Akbari C.M., Primavera J., Donaghue V.M. Endothelial dysfunction and the expression of endothelial nitric oxide synthetase in diabetic neuropathy, vascular disease, and foot ulceration. Diabetes 1998, 47: 457–463.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Palmer R.M.J., Moncada S. A novel citrulline-forming enzyme implicated in the formation of nitric oxide by vascular endothelial cells. Biochem. Biophys. Res. Commun. 1989, 158: 348–352.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Moncada S., Radomski M.W., Palmer R.M.J. Endothelium derived relaxing factor: identification as nitric oxide and role in the control of vascular tone and platelet function. Biochem. Pharmacol. 1988, 37: 2495–2502.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Yang Z., von Segesser L., Bauer Estulz P., Turina M., Luscher F.T. Different activation of the endothelial L-arginine and ciclooxygenase pathway in the human internal mammary artery and saphenous vein. Circ. Res. 1991, 68: 52–60.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Martina V., Bruno G.A., Trucco F., Zumpano E., Tagliabue M., Pescarmona G.P. Platelet cNOS activity is reduced in patients with IDDM and NIDDM. Thromb. Haemost. 1998, 79: 520–522.

    PubMed  CAS  Google Scholar 

  12. 12.

    Rabini R.A., Staffolani R., Fumelli P., Mutus B., Curatola G., Mazzanti L. Decreased nitric oxide synthase activity in platelets from IDDM and NIDDM patients. Diabetologia 1998, 41: 101–104.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Pieper G.M. Acute amelioration of diabetic endothelial disfunction with a derivative of nitric oxide sinthase cofactor, tetrahydrobiopterin. J. Cardiovasc. Pharmacol. 1997, 29: 8–15.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Ghigo D., Alessio P., Foco A., Bosia A. A Nitric oxide synthesis is impaired in GSH depleted human umbilical vein endothelial cells. Am. J. Phisiol. Endocrinol. Metab. 1993, 265 (Cell Physiol. 34): C728–C732.

    CAS  Google Scholar 

  15. 15.

    Pescarmona G.P., Bosia A., Ghigo D. Shortened red cell life span in diabetes: mechanism of haemolysis. In: Weatherall D.J., Fiorelli G., Gorinio S. (Eds), Advances in red cell biology. Raven, New York, 1992, p. 391.

    Google Scholar 

  16. 16.

    Murakami K., Kondo T., Ohtsuda Y., Fujiwara Y., Shimada M., Kawakami Y. Impairment of GSH metabolism in erytrocytes from patients with diabetes mellitus. Metabolism 1989, 38: 753–758.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Yoshida K., Hirokawa J., Tagami S., Kawakami Y., Urzata Y., Kondo T. Weakened cellular scavenging activity against oxidative stress in diabetes mellitus: regulation of GSH synthesis and efflux. Diabetologia 1985, 38: 201–210.

    Article  Google Scholar 

  18. 18.

    Thomas G., Skrinska V., Lucas F.V., Schumacher O.P. Platelet glutathione and thromboxane synthesis in diabetes. Diabetes 1985, 34: 951–954.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Graier W.F., Simecek S., Kukovctz W.R., Kostner G.M. High-D-glucose-induced changes in endothelial Ca2+/EDRF signalling is due to generation of superoxide anions. Diabetes 1996, 45: 1386–1395.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Graier W.F., Posch K., Wascher T.C., Kukovetz W.R., Kostner G.M. Role of superoxide anions in changes of endothelial vasoactive response during acute hyperglycaemia. Horm. Metab. Res. 1997, 29: 622–629.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Beutler E. Red cell metabolism. In: Grune & Stratton (Eds.), A manual of biochemical methods. New York and London, 1973, p. 103.

    Google Scholar 

  22. 22.

    DeClerk P.J., Alessi M.C., Vestreken M., Kruithoff E.K.O., Vague J., Collen D. Measurement of plasminogen activator inhibitor-1 in biological fluids with a murine monoclonal antibody-hosed enzyme linked immunosorbent assay. Blood 1988, 71: 220–225.

    Google Scholar 

  23. 23.

    Verheijen J.H., Mullaart E., Chang G.T.G., Kluft C., Wijn Gaards G. A simple sensitive spectrophotometric assay for extrinsic (tissue-type) plasminogen activator applicable to measurements in plasma. Thromb. Haemost. 1982, 48: 266–269.

    PubMed  CAS  Google Scholar 

  24. 24.

    Bosia A., Losche W., Spangenberg P., Pescarmona G.P. Role of glutathione in blood platelet function. In: Dolphin D., Poulson R., Avramovic O., (Eds.), Glutathione. Chemical, biochemical and medical aspects. J. Wiley and Sons, Inc. Publ., New York, London, Sidney, Toronto, 1989, p. 235.

    Google Scholar 

  25. 25.

    Bosia A., Spangenberg P., Ghigo D. Effect of GSH depletion by 1-chloro-2,4-dinitrobenzene on human platelet aggregation, arachidonic acid oxidative metabolism and cytoskeletal proteins. Thromb. Res. 1985, 37: 423–434.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Bosia A., Treves S., Pannocchia A. Influence of platelet GSH level on arachidonic acid-dependent Ca++ influx. Ital. J. Biochem. 1986, 35: 59–61.

    Google Scholar 

  27. 27.

    Tsikas D., Ikic M., Tewes K.S., Raida M., Frolich J.C. Inhibition of platelet aggregation by S-nitroso-cysteine via cGMP-independent mechanisms: evidence of inhibition of thromboxane A2 synthesis in human blood platelets. FEBS Lett. 1999, 442: 162–166.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Schaeffer G., Wascher T.C., Kostner G.M., Graier W.F. Alterations in Ca2+ signalling in diabetic patients is due to increased formation of superoxide anions and reduced nitric oxide production. Diabetologia 1999, 42: 167–176.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Graier W.F., Simecek S., Hoebel B., Wascher T.C., Dittrich P., Kostner G.M. Antioxidant prevent high D-glucose-enhanced endothelial Ca2+/cGMP response scavenging superoxide anions. Eur. J. Pharmacol. 1997, 322: 113–122.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Schmidt K., Graier W.F., Kostner G.M., Mayer B., Kukovetz W.R. Activation of soluble guanylate cyclase by nitrovasodilators is inhibited by oxidized low-density lipoprotein. Biochem. Biophys. Res. Commun. 1990, 172: 614–619.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Losche W., Breddin K., Pescarmona G.P. Inhibition of platelet activation by 2-mercaptopropionylglycin in vitro and in vivo. Folia Haematol. 1998, 115: 185–188.

    Google Scholar 

  32. 32.

    Pacchiarini L., Tua A., Grignani G. In vitro effect of reduced glutathione on platelet funtion. Haematologica 1996, 81: 497–502.

    PubMed  CAS  Google Scholar 

  33. 33.

    Martina V., Bruno G.A., Pannocchia A., Zumpano E., Tagliabue M., Stella G., Pescarmona G.P. PAI-1 reduction after treatment with GSH in NIDDM. Fibrinolysis 1996, 10 (Suppl. 2): 63–65.

    Article  CAS  Google Scholar 

  34. 34.

    Auwerx J., Bouillon R., Collen D., Geboers D. Tissue-type plasminogen activator antigen and plasminogen activator inhibitor in diabetes mellitus. Arteriosclerosis 1988, 8: 68–72.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Garcia Frade L.J., De La Calle H., Torrado M., Lara J.I., Cuellar L., Garcia A. Hypofibrinolysis associated with vasculopathy in non-insulin-dependent diabetes mellitus. Thromb. Res. 1990, 59: 51–59.

    Article  Google Scholar 

  36. 36.

    Bachmann F. Fibrinolysis. In: Verstraete M., Vermeylen J., Lijnen H.R., Arnout J. (Eds.), Thrombosis and haemostasis. Leuven University Press, Leuven, 1987, p. 227.

    Google Scholar 

  37. 37.

    Korbut R., Warner T.D., Gryglewski R.J., Vane J.R. The effect of nitric oxide synthase inhibition on the plasma fibrinolytic system in septic shock in rats. Br. J. Pharmacol. 1994, 112: 289–291.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  38. 38.

    Korbut R., Marcinkiewicz W., Cieslik K., Gryglevski R.J. The effect of nitric oxide donors on the release of plasminogen activator inhibitor (PAI) from rabbit platelets in vitro. J. Phys. Pharm. 1995, 46: 37–44.

    CAS  Google Scholar 

  39. 39.

    van den Eijnden-Schraunen Y., Atsma D.E., Lupu F., de Vries R.E., Kooistra T., Emeis J.J. Involvement of calcium and G proteins in the acute release of tissue-type plasminogen activator and von Willebrand factor from cultured human endothelial cells. Arterioscler. Thromb. Vasc. Biol. 1997, 17: 2177–2187.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Dr. V. Martina.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Martina, V., Bruno, G.A., Zumpano, E. et al. Administration of glutathione in patients with type 2 diabetes mellitus increases the platelet constitutive nitric oxide synthase activity and reduces PAI-1. J Endocrinol Invest 24, 37–41 (2001).

Download citation


  • Nitric oxide
  • cNOS activity
  • PAI-1
  • glutathione
  • type 2 diabetes mellitus