Abstract
Alterations in the hypothalamic-pituitary-adrenal axis (HPAA) and failure of dexamethasone (DXT) to suppress cortisol secretion occur in Alzheimer’s disease (AD). This study was aimed to settle possible differences in some clinical (age, body weight, body mass index, dementia severity) and hormonal parameters in AD patients non-responders to overnight 1 mg-DXT suppression test compared with the responder subjects. ACTH, cortisol and dehydroepiandrosterone sulphate (DHEAS) day-time levels were assessed in 25 AD patients and in 12 age-matched healthy controls before DXT administration. In view of their neuroprotective effects, plasma levels of Insulin-like Growth Factor-I (IGF-I) and of IGF-Binding Proteins (IGFBPs) were also determined. After DXT, 8 AD subjects (32%) showed cortisol levels above the conventional cut-off of 140 nmol/L. No significant differences were found in clinical parameters in suppressor vs nonsuppressor patients. AD subjects showed higher cortisol, cortisol/DHEAS ratios, and lower DHEAS levels in comparison with controls. Both ACTH and cortisol levels were not different in suppressor and nonsuppressor patients, but DHEAS levels were significantly lower in nonsuppressor cases, who also exhibited ACTH and cortisol periodicities more altered than in suppressor and in control subjects. IGF-I and IGFBP-3 levels were lower and those of IGFBP-1 higher in nonsuppressor than in suppressor cases and in healthy controls. IGF-I/IGFBPs system data were correlated with cognitive impairment and adrenal steroid levels in AD patients.
Similar content being viewed by others
References
Raskind M.A., Peskind E., Rivard M.-F., Veith R., Barnes R. The dexamethasone suppression test and cortisol circadian rhythm in primary degenerative dementia. Am. J. Psychiatry 1982, 139: 1468–1471.
Skare S., Pew B., Dysken M. The dexamethasone suppression test in dementia: a review of the literature. J. Geriatr. Psychiatry Neurol. 1990, 3: 124–138.
Carroll B.J., Feinberg M., Greden J.F., Tarika J., Albala A.A., Haskett R.F., James N., Kronfold Z., Lohr N., Steinert M., deVigne J.P., Young E. A specific laboratory test for the diagnosis of melancholia. Standardization, validation and clinical utility. Arch. Gen. Psychiatry 1981, 38: 15–22.
Herbert J. Neurosteroids, brain damage, and mental illness. Exp. Gerontol. 1998, 33: 713–727.
Davous P., Roudier M., Piketty M.L., Abramowitz C., Lamour Y. Pharmacological modulation of cortisol secretion and dexamethasone suppression in Alzheimer’s disease. Biol. Psychiatry 1988, 23: 13–24.
Balldin J., Blennow K., Brane G., Gottfries C.G., Karlsson I., Regland B., Wallin A. Relationship between mental impairment and HPA axis activity in dementia disorders. Dementia 1994, 5: 252–256.
Magri F., Locatelli M., Balza G., Molla G., Cuzzoni G., Fioravanti M., Solerte S.B., Ferrari E. Changes in endocrine circadian rhythms as markers of physiological and pathological brain aging. Chronobiol. Intern. 1997, 14: 385–396.
Wilkinson C.W., Peskind E.R., Raskind M.A. Decreased hypothalamic-pituitary-adrenal axis sensitivity to cortisol feedback inhibition in human aging. Neuroendocrinology 1997, 65: 79–90.
Boscaro M., Paoletta A., Scarpa E., Barzon L., Fusaro P., Fallo F., Sonino N. Age-related changes in glucocorticoid fast feedback inhibition of adrenocorticotropin in man. J. Clin. Endocrinol. Metab. 1998, 83: 1380–1383.
Huizenga N.A.T.M., Koper J.W., DeLange P., Pols H.A.P., Stolk R.P., Grobbee D.E., De Jong F.H., Lamberts S.W.J. Interperson variability but intraperson stability of baseline plasma cortisol concentrations, and its relation to feedback sensitivity of the hypothalamuspituitary-adrenal axis to a low dose of dexamethasone in elderly individuals. J. Clin. Endocrinol. Metab. 1998, 83: 47–54.
De Kloet E.R., Van der Vies J., DeWied D. The site of suppressive action of dexamethasone on pituitary-adrenal activity. Endocrinology 1974, 94: 61–73.
De Kloet E.R., Vreugdenhil E., Oitzl M.S., Joëls M. Brain corticosteroids receptor balance in health and disease. Endocr. Rev. 1998, 19: 269–301.
Mc Ewen B.S. Stress and aging hippocampus. Front. Neuroendocrinol. 1999, 20: 49–70.
Svec F., Lopez A. Antiglucocorticoid actions of dehydroepiandrosterone and low concentration in Alzheimer’s disease. Lancet 1989, i: 1335–1336.
Behl C. Effects of glucocorticoids on oxidative stress-induced hippocampal cell death: implication for the pathogenesis of Alzheimer’s disease. Exp. Gerontol. 1998, 33: 689–696.
Kalimi M., Shafagoj Y., Loria R., Padgett D., Regelson W. Antiglucocorticoid effects of dehydroepiandrosterone (DHEA). Mol. Cell. Biochem. 1994, 131: 99–104.
Baulieu E.E., Robel P. Dehydroepiandrosterone and dehydroepiandrosterone sulfate as neuroactive neurosteroids. J. Endocrinol. 1996, 150: S221–S239.
Kimonides V.G., Khatibi N.H., Svendsen C.N., Sofroniew M.V., Herbert J. Dehydroepiandrosterone (DHEA) and DHEA-sulfate (DHEAS) protect hippocampal neurons against excitatory amino acid-induced neurotoxicity. Proc. Natl. Acad. Sci. USA 1998, 95: 1852–1857.
Guazzo E.P., Kirkpatrick P.J., Goodyer I.M., Shiers H.M., Herbert J. Cortisol, dehydroepiandrosterone (DHEA), and DHEA sulfate in the cerebrospinal fluid of man: relation to blood levels and the effects of age. J. Clin. Endocrinol. Metab. 1996, 81: 3951–3960.
Sunderland T., Merril C.R., Harrington M.G., Lawlor B.A., Molchan S.E., Martinez R., Murphy D.R. Reduced plasma dehydroepiandrosterone concentrations in Alzheimer’s disease. Lancet 1989, ii: 570.
Näsman B., Olsson T., Backstrom T., Eriksson S., Grankvist K., Viitanen M., Bucht G. Serum dehydroepiandrosterone sulfate in Alzheimer’s disease and multi-infarct dementia. Biol. Psychiatry 1991, 30: 684–690.
Murialdo G., Nobili F., Rollero A., Gianelli M.V., Copello F., Rodriguez G., Polleri A. Hippocampal perfusion and pituitary-adrenal axis in Alzheimer’s disease. iNeuropsychobiology (in press).
Torres-Aleman I. Insulin-like Growth Factors as mediators of functional plasticity in the adult brain. Horm. Metab. Res. 1999, 31: 114–119.
Hoffman A.R., Lieberman S.A., Butterfield G., Thompson J., Hintz R.L., Ceda G.P., Marcus R. Functional consequences of somatopause and its treatment. Endocr. Rev. 1997, 7: 73–76.
Connor B., Beilharz E.J., Williams C., Synk R., Gluckman P.D., Faull R.L.M., Dragunow M. Insulin-like growth Factor-I (IGF-I) immunoreactivity in the Alzheimer’s disease temporal cortex and hippocampus. Mol. Brain Res. 1997, 49: 283–290.
Morales A.J., Nolan J.J., Nelson J.C., Yen S.S.C. Effects of replacement dose of dehydroepiandrosterone in men and women of advancing age. J. Clin. Endocrinol. Metab. 1994, 78: 1360–1367.
Pfeilschifter J., Scheidt-Nave C., Leidig-Bruckner G., Woitge H.W., Blum W.F., Wüster C., Haack D., Ziegler R. Relationship between circulating Insulin-like Growth Factor components and sex hormones in a population-based sample of 50- to 80-year-old men and women. J. Clin. Endocrinol. Metab. 1996, 81: 2534–2540.
Casson P.R., Santoro N., Elkind-Hirsch K., Carson S.A., Hornsby P.J., Abraham G., Buster J.E. Postmenopausal dehydroepiandrosterone administration increases free insulin-like growth factor -I and decreases high-density lipoprotein: a six-month trial. Fertil. Steril. 1998, 70: 107–110.
Jones J., Clemmons D.R. Insulin-like growth factors and their binding proteins: biological actions. Endocr. Rev. 1995, 16: 3–34.
McKhann G., Drachman D., Folstein M., Katzman R., Price D., Stadlan E.M. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS/ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984, 34: 939–944.
Folstein M.F., Folstein S.E., McHughes P.R. Mini Mental State: a practical method for grading the cognitive state of patients for clinicians. J. Psychiatry Res. 1975, 12: 189–198.
Reisberg B., Ferris S., De Leon M.J., Croock T. The global deterioration scale for assessment of primary degenerative dementia. Am. J. Psychiatry 1982, 139: 1136–1139.
Tsagarakis S., Grossman A. The hypothalamus-pituitary-adrenal axis in senescence. Front. Neuroendocrinol. 1999, 20: 70–91.
Swanwick G.R.J., Kirby M., Bruce I., Buggy F., Coen R.F., Cakley D., Lawlor B.A. Hypothalamic-pituitary-adrenal axis dysfunction in Alzheimer’s disease: lack of association between longitudinal and cross-sectional findings. Am. J. Psychiatry 1998, 155: 286–289.
Sapolsky R.M., Plotsky P.M. Hypercortisolism and its possible neural bases. Biol. Psychiatry 1990, 27: 973.
O’Brien J.T., Schweitzer I., Ames D., Tuckwell V., Mastwyk M. Cortisol suppression by dexamethasone in the healthy elderly: effect of age, dexamethasone levels, and cognitive function. Biol. Psychiatry 1994, 36: 389–394.
Hatzinger M., Z’Brun A Hemmeter U., Seifritz E., Baumann F., Holsboer-Trachsler E., Heuser I. Hypothalamic-pituitary-adrenal system function in patients with Alzheimer’s disease. Neurobiol. Aging 1995, 16: 205–209.
Miller A.H., Sastri G., Speranza A.J. jr, Lawlor B.A., Mohs R.C., Ryan T.M., Gabriel S.M., Serby M., Schneider J., Davis K.L. Lack of association between cortisol hypersecretion and non suppression on the DST in patients with Alzheimer’s disease. Am. J. Psychiatry 1994, 151: 267–270.
Martignoni E., Petraglia F., Costa A., Bono G., Genazzani A.R., Nappi G. Dementia of the Alzheimer type and hypothalamus-pituitary-adrenal axis: changes in cerebrospinal fluid corticotropin releasing factor and plasma cortisol levels. Acta Neurol. Scand. 1990, 81: 452–456.
Waltman C., Blackman M.R., Chrousos G.P., Riemann C., Harman S.M. Spontaneous and glucocorticoid-inhibited cortisol secretion in healthy young and old men. J. Clin. Endocrinol. Metab. 1991, 73: 495–502.
Bornstein S.R., Chrousos G.P. Adrenocorticotropin (ACTH)- and non-ACTH-mediated regulation of the adrenal cortex: neural and immune inputs. J. Clin. Endocrinol. Metab. 1999, 84: 1729–1736.
Rollero A., Murialdo G., Fonzi S., Garrone S., Gianelli M.V., Gazzerro E., Barreca A., Polleri A. Relationship between cognitive function, growth hormone and Insulin-like Growth Factor-I plasma levels in aged subjects. Neuropsychobiology 1998, 38: 73–79.
Guan J., Williams C., Gunning M., Mallard C., Gluckman P. The effects of IGF-I treatment after hypoxic-ischemic brain injury in adult rats. J. Cereb. Blood Flow Metab. 1993, 13: 609–616.
Doré S., Kar S., Quirion R. Insulin-like Growth Factor-I protects and rescues hippocampal neurons against?-amyloid- and human amylin-induced toxicity. Proc. Natl. Acad. Sci. USA 1997, 94: 4772–4777.
Lee P.D.K., Giudice L.C., Conover C.A., Powell D.R. Insulin-like growth factor binding protein-1: recent findings and new directions. Proc. Soc. Exp. Biol. Med. 1997, 216: 319–357.
Conover C.A., Clarkson J.T., Bale L.K. Effect of glucocorticoids on Insulin-like Growth Factor regulation of IGF-binding protein expression in fibroblasts. Endocrinology 1995, 136: 1403–1410.
Suwanichkul A., Allander S.V., Morris S.L., Powell D.R. Glucocorticoids and insulin regulate expression of the human gene for Insulin-like Growth Factor- Binding protein-1 through proximal promoter element. J. Biol. Chem. 1994, 269: 30835–30841.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Murialdo, G., Barreca, A., Nobili, F. et al. Dexamethasone effects on cortisol secretion in Alzheimer’s disease: Some clinical and hormonal features in suppressor and nonsuppressor patients. J Endocrinol Invest 23, 178–186 (2000). https://doi.org/10.1007/BF03343703
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF03343703