Abstract
Central hypothyroidism, characterized by insufficient TSH secretion in the presence of low levels of thyroid hormones, is a rare disorder. It has recently been found that, although mainly due to tumors or infiltrative diseases of the hypothalamo-pituitary area or to pituitary atrophy, central hypothyroidism may be caused by inactivating mutations in several of the genes that code for the various proteins involved in the regulation of the hypothalamo-pituitary-thyroid axis (HPTA). These experiments of nature allow us to better understand the pathophysiology but also the normal physiology of the HPTA. This review will analyze reports of mutations that affect the HPTA and result in either isolated central hypothyroidism or in the syndrome of combined pituitary hormone deficiency (CPHD). Mutations have been identified in the genes for the TRH receptor, the transcription factors Pit-1 and PROP1, and the TSH β-subunit.
Similar content being viewed by others
References
Martino E., Bartalena L., Faglia G., Pinchera A. Central hypothyroidism. In: Braverman L.E., Utiger R.D. (Eds.), The Thyroid. Lippincott-Raven, Philadelphia, 1996, p. 779.
Walfish P.G., Tseng K.H. Thyroid physiology and pathology. In: Collu R., Ducharme J.R., Guyda H.J. (Eds.), Pediatric Endocrinology. Raven Press, New York, 1989, p. 367.
Collu R., Taché Y., Charpenet G. Behavioral and hormonal effects exerted by TRH through the CNS. In: Cummings L.A., Funder L.W., Mendelsohn F.A.O. (Eds.), Proceedings of the Sixth International Congress of Endocrinology. Australian Academy of Sciences, Canberra, 1980, p. 492.
Taché Y., Lesiège D., Vale W., Collu R. Gastric hypersecretion by intracisternal TRH: Dissociation from hypophysiotropic activity and role of central catecholamines. Eur. J. Pharmacol. 1985, 107: 149–152.
Mitnick M., Reichlin S. Enzymatic synthesis of thyrotropin-releasing hormone (TRH) by hypothalamic “TRH synthase”. Endocrinology 1972, 91: 1145–1148.
Kaji H., Takahashi Y., Chihara K. The regional distribution of thyrotropin-releasing hormone receptor messenger ribonucleic acid in the brain. Neurosci. Lett. 1993, 151: 81–84.
Fliers E., Noppen N.W.A., Wiersinga W.M., Visser T.J., Swaab D.F. Distribution of thyrotropin-releasing hormone (TRH)-containing cells and fibers in the human hypothalamus. J. Comp. Neurol. 1994, 350: 311–323.
Yamada M., Radovick S., Wondisford F.E., Nakayama Y., Weintraub B.D., Wilber J.F. Cloning and structure of human genomic DNA and hypothalamic cDNA encoding human preprothyrotropin-releasing hormone. Mol. Endocrinol. 1990, 4: 551–556.
Yamada M., Wondisford F.E., Radovick S., Nakayama Y., Weintraub B.D., Wilber J.F. Assignment of human preprothyrotropin-releasing hormone (TRH) gene to chromosome 3. Somat. Cell. Mol. Genet. 1991, 17: 97–100.
Feng P., Carnell N.E., Kim U.J., Jacobs S., Wilber J.F. The human testis: a novel locus for thyrotropin-releasing hormone (TRH) and TRH mRNA. Trans. Assoc. Am. Physicians 1992, CV: 222–228.
Wilber J.F., Feng P., Li Q.-L., Shi Z.X. The thyrotropin-releasing hormone gene. Differential regulation, expression, and function in hypothalamus and two unexpected extrahypothalamic loci, the heart and testis. Trends Endocrinol. Metab. 1996, 7: 93–100.
Niimi H., Inomata H., Sasaki N., Nakajima H. Congenital isolated thyrotropin-releasing hormone deficiency. Arch. Dis. Child. 1982, 57: 877–878.
Strader C.D., Fong T.M., Graziano M.A., Tota M.R. The family of G-protein-coupled receptors. FASEB J. 1995, 9: 745–754.
Aragay A.M., Katz A., Simon M.I. The Gαq and Gα11 proteins couple the thyrotropinreleasing hormone receptor to phospholipase C in GH(3) cells. J. Biol. Chem. 1992, 267: 24983–24988.
Hsieh K.A., Martin T.F.J. Thyrotropin-releasing hormone and gonadotropin-releasing hormone receptors activate phospholipase C by coupling to the guanosine triphosphatebinding protein Gq and G11. Mol. Endocrinol. 1992, 6: 1673–1681.
PauIssen R.A., PauIssen E.J., Gautvik K.M., Gordeladze J.O. The thyroliberin receptor interacts directly with a stimulatory guanine-nucleotide-binding protein in the activation of adenylyl cyclase in GH3 rat pituitary tumor cells. Evidence obtained by the use of antisense RNA inhibition and immunoblocking of the stimulatory guanine-nucleotide-binding protein. Eur. J. Biochem. 1992, 204: 413–418.
Straub R.E., Freeh G.C., Joho R.H., Gershengorn M.C. Expression cloning of a cDNA encoding the mouse pituitary thyrotropin-releasing hormone receptor. Proc. Natl. Acad. Sci. USA 1990, 87: 9514–9518.
Duthie S.M., Taylor P.M., Anderson L., Cook L., Eidne K.A. Cloning and functional characterization of the human TRH receptor. Mol. Cell. Endocrinol. 1993, 95: R11–R15.
Yamada M., Monden T., Satoh T., Satoh N., Murakami M., Iriushijima T., Kakegawa T., Mori M. Pituitary adenomas of patients with acromegaly express thyrotropin-releasing hormone messenger RNA: cloning and functional expression of the human thyrotropin-releasing hormone gene. Biochem. Biophys. Res. Commun. 1993, 195: 727–745.
Hinuma S., Hosoya M., Ogi K., Tanaka H., Nagai Y., Onda H. Molecular cloning and functional expression of a human thyrotropin-releasing hormone (TRH) receptor gene. Biochem. Biophys. Acta 1994, 1219: 251–259.
Morrison N., Duthie S.M., Boyd E., Eidne K.A., Connor J.M. Assignment of the gene encoding the human thyrotropin-releasing hormone receptor to 8q23 by fluorescence in situ hybridization. Hum. Genet. 1994, 93: 716–718.
Matre V., Hovring P.H., Orstavik S., Frengen E., Rian E., Velickovic Z., Murray-McIntosh R.A., Gautvik K.M. Structural and functional organization of the gene encoding the thyrotropin-releasing hormone receptor. J. Neurochem. 1999, 72: 40–51.
de Roux N., Young L., Misrahi M., Genet R., Chanson P., Schaison G., Milgrom E. A family with hypogonadoptropic hypogonadism and mutations in the gonadotropin-releasing hormone receptor. N. Engl. J. Med. 1997, 337: 1597–1602.
Wajnrajch M.A., Genner L.M., Harbison M.D., Streamson C.C.Jr., Leibel R.L. Nonsense mutation in the human growth hormone-releasing hormone receptor causes growth failure analogous to the little (lit) mouse. Nature Genetics 1996, 12: 85–90.
Collu R., Tang J.-Q., Castagné J., Lagacé G., Masson N., Huot C., Deal C., Delvin E., Faccenda E., Eidne K.A., Van Vliet G. A novel mechanism for isolated central hypothyroidism: Inactivating mutations in the thyrotropin-releasing hormone receptor gene. J. Clin. Endocrinol. Metab. 1997, 82: 1561–1565.
Periman J.H., Laakkonen L., Osman R., Gershengorn M.C. A model of the Thyrotropin-releasing hormone (TRH) receptor binding pocket. Evidence for a second direct interaction between transmembrane helix 3 and TRH. J. Biol. Chem. 1994, 269: 23383–23386.
Bodner M., Castrillo J.L., Theill L.E., Derink T., Ellismann M., Karin M. The pituitary-specific transcription factor GHF-1 is a homeobox-containing protein. Cell 1988, 55: 505–518.
Herr W., Sturin R.A., Clew A.G., Corcoran L.M., Baltimore D., Sharp P.A., Ingraham H.A., Rosenfeld M.G., Finney M., Ruvkin G., Horvitz H.R. The POU domain: a large conserved region in the mammalian Pit-1, oct-1, and Caenorhabditis elegans unc-86 gene products. Genes Dev. 1988, 2: 1513–1516.
Ohta K., Nobukuni Y., Mitsubuchi H., Ohta T., Tohma T., Jinno H., Endo F., Matsuda I. Characterization of the gene encoding human pituitary-specific transcription factor, Pit-1. Gene 1992, 122: 387–388.
Delhase M., Vila V., Hooghe-Peters E.L., Castrillo J.L. A novel pituitary transcription factor is produced by alternative splicing of the human GHF-1/PIT-1 gene. Gene 1995, 155: 273–275.
Schanke J.T., Conwell C.M., Durning M., Fisher J.M., Golos T.G. Pit-1/growth hormone factor 1 splice variant expression in the rhesus monkey pituitary gland and the rhesus and human placenta. J. Clin. Endocrinol. Metab. 1997, 82: 800–807.
Nelson C., Albert V.R., Elsholtz H.P., Lu L.I.-W., Rosenfeld M.G. Activation of cell-specific expression of rat growth hormone and prolactin genes by a common transcription factor. Science 1988, 239: 1400–1405.
Mangalam H.J., Albert V.R., Jngraham H.A., Kapiloff M., Wilson J., Nelson C., Elsholtz H., Rosenfeld M.G. A pituitary POU domain protein, Pit-1, activates both growth hormone and prolactin promoters transcriptionally. Genes Dev. 1989, 3: 946–958.
Simmons D.M., Voss J.W., Ingraham H.A., Holloway J.M., Broide R.S., Rosenfeld M.G., Swanson J.M. Pituitary cell phenotypes involve cell-specific Pit-1 mRNA translation and synergistic interactions with other classes of transcription factors. Genes Dev. 1990, 4: 695–711.
Day R.N., Maurer R.A. The distal enhancer region of the rat prolactin gene contains elements conferring response to multiple hormones. Mol. Endocrinol. 1989, 3: 3–9.
Peers B., Monget P., Nalda M.A., Voz M.L., Berwaer M., Belayew A., Martial A. Transcriptional induction of the human prolactin gene by cAMP requires two cis-acting elements and at least the pituitary-specific factor Pit-1. J. Biol. Chem. 1991, 266: 18127–18134.
Voss L.W., Rosenfeld M.G. Anterior pituitary development: short tales from dwarf mice. Cell 1992, 70: 527–530.
Li S., Crenshaw E.B., Rawson E.J., Simmons D.M., Swanson L.W., Rosenfeld M.G. Dwarf locus mutants three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature 1990, 347: 528–533.
Ohta K., Nobukuni Y., Mitsubuchi H., Fujimoto S., Matsuo N., Inagaki H., Endo F., Matsuda I. Mutations in the Pit-1 gene in children with combined pituitary hormone deficiency. Biochem. Biophys. Res. Commun. 1992, 189: 851–855.
Pfaffle R.W., DiMattia G.E., Parks L.S., Brown M.R., Wit J.M., Jansen M., Van der Nat H., Van den Brande J.L., Rosenfeld M.G., Ingraham H.A. Mutation of the POU-specific domain of Pit-1 and hypopituitarism without pituitary hypoplasia. Science 1992, 257: 1118–1121.
Radovick S., Nations M., Du Y., Berg L.A., Weintraub B.D., Wondisford F.E. A mutation in the POU-homeodomain of Pit-1 responsible for combined pituitary hormone deficiency. Science 1992, 257: 1115–1118.
Tatsumi K.-I., Miayi K., Notomi T., Kaibe K., Amino N., Mizuno Y., Kohno H. Cretinism with combined hormone deficiency caused by a mutation in the Pit-1 gene. Nature Genet. 1992, 1: 56–58.
Okamoto N., Wada Y., Ida S., Koga R., Ozono K., Chiyo H., Hayashi A., Tatsumi K. Monoallelic expression of normal mRNA in the Pit-1 mutation heterozygotes with normal phenotype and biallelic expression in the abnormal phenotype. Hum. Mol. Genet. 1994, 3: 1565–1568.
Cohen L.E., Wondisford F.E., Salvatoni A., Maghnie M., Brucker-Davis R., Weintraub B.D., Radovick S. A “hot spot” in the Pit-1 gene responsible for combined pituitary hormone deficiency: Clinical and molecular correlates. J. Clin. Endocrinol. Metab. 1995, 80: 679–684.
de Zegher F., Parnasetti F., Vanhole C., Devlieger H., van den Berghe G., Martial L.A. The prenatal role of thyroid hormones evidenced by fetomaternal Pit-1 deficiency. J. Clin. Endocrinol. Metab. 1995, 80: 3127–3130.
Irie Y., Tatsumi K., Ogawa M., Kamijo T., Preeyasombat C., Suprasongsin C., Amin N. A novel E250X mutation of the Pit-1 gene in a patient with combined pituitary hormone deficiency. Endocr. J. 1995, 42: 351–354.
Irie Y., Tatsumi K.-I., Kusuda K., Kawawaki H., Boyages S.C., Nose O., Ichiba Y., Katsumata N., Amino N. Screening for PIT-1 abnormality by PCR direct sequencing method. Thyroid 1995, 5: 207–210.
Pfaffle R.W., Otten B., Eiholtzer U., Kim C., Blankenstein O. A genetic cause of familial and sporadic cases with combined pituitary hormone deficiencies for GH, PRL, and TSH. Horm. Res. 1995, 44: 9 (Abstract).
Pellegrini-Bouiller I., Belicar P., Barlier A., Gunz G., Charvet J.-P., Jaquet P., Brue T., Vialettes B., Enjalbert A. A new mutation of the gene encoding the transcription factor Pit-1 is responsible for combined pituitary hormone deficiency. J. Clin. Endocrinol. Metab. 1996, 81: 2790–2796.
Aarskog D., Eiken H.G., Bjerknes R., Myking O.L. Pituitary dwarfism in the R271 W Pit-1 gene mutation. Eur. J. Pediatr. 1997, 156: 829–834.
Brown M.R., Parks J.S., Adess M.E., Rich B.H., Rosenthal I.M., Voss T.C., VanderHeyden T.C., Hurley D.L. Central hypothyroidism reveals compound heterozygous mutations in the Pit-1 gene. Horm. Res. 1998, 49: 98–102.
Martinell A.M.R., Braga M., de Lacerda L., Raskin S., Graf H. Description of a Brazilian patient bearing the R271 W Pit-1 mutation. Thyroid 1998, 8: 299–304.
Pernasetti P., Milner R.D.G., Al Ashwal A.A.Z., de Zegher F., Chavez V.M., Muller M., Martial J.A. Pro239Ser: A novel recessive mutation of the Pit-1 gene in seven Middle Eastern children with growth hormone, prolactin, and thyrotropin deficiency. J. Clin. Endocrinol. Metab. 1998, 83: 2079–2083.
Ward L., Chavez M., Huot C., Lecocq P., Collu C., Décarie J.-C., Martial J.A., Van Vliet G. Severe congenital hypopituitarism with low prolactin levels and age-dependent anterior pituitary hypoplasia: A clue to a PIT-1 mutation. J. Pediatr. 1998, 132: 1036–1039.
Sornson M.W., Wu W., Dasen J.S., Flynn S., Norman D.J., O’Connell S.M., Gukovsky I., Carriere C., Ryan A.K., Miller A.P., Zuo L., Gleiberman A.S., Andersen B., Beamer W.G., Rosenfeld M.G. Pituitary lineage determination by the prophet of Pit-1 homeodomain factor defective in Ames dwarfism. Nature 1996, 384: 327–333.
Brown-Borg H.M., Borg K.E., Meliska C.J., Bartke A. Dwarf mice and the ageing process. Nature 1996, 384: 33 (Letter).
Cogan J.D., Wu W., Phillips J.A. III, Arnthold I.J., Fofanova O.V., Osorio M.G., Bircan I., Moreno A., Mendonca B.B. The PROP1 2-base pair deletion is a common cause of combined pituitary hormone deficiency. J. Clin. Endocrinol. Metab. 1998, 83: 3346–3349.
Fluck C., Deladoey J., Rutishauser K., Eble A., Marti U., Wu W., Mullis P.E. Phenotypic variability in familial combined pituitary hormone deficiency caused by a PROP1 gene mutation resulting in the substitution of Arg to Cys at codon 120 (R120C). J. Clin. Endocrinol. Metab. 1998, 83: 3727–3734.
Deladoey J., Fluck C., Buyukgebiz A., Kuhlmann B.V., Eblé A., Hiondmarsh P.C., Wu W., Mullis P.E. “Hot spot” in the PROP1 gene responsible for combined pituitary hormone deficiency. J. Clin. Endocrinol. Metab. 1999, 84: 1645–1650.
Shupnik M.A., Ridgway E.C., Chin W.W. Molecular biology of thyrotropin. Endocr. Rev. 1989, 10: 459–475.
Hayashizaki Y., Hiraoka Y., Endo Y., Matsubara K. Thyroid-stimulating hormone (TSH) deficiency caused by a single base substitution in the CAGIC region of the β-subunit. EMBO J. 1989, 8: 2291–2296.
Persani L. Hypothalamic thyrotropin-releasing hormone and thyrotropin biological activity. Thyroid 1998, 8: 941–946.
Beck-Peccoz P., Amr S., Menezes Ferreira M.M., Faglia G., Weintraub B.D. Decreased receptor binding of biologically inactive thyrotropin in central hypothyroidism. Effect of treatment with thyrotropin-releasing hormone. N. Engl. J. Med. 1985, 312: 1085–1090.
Wondisford F.E., Radovick S., Moates J.M., Usala S.J., Weintraub B.D. Isolation and characterization of the human thyrotropin β-subunit gene: Differences in gene structure and promoter function from murine species. J. Biol. Chem. 1988, 263: 12538–12542.
Dracopoli N.C., Meisler M.H. Mapping the human amylase gene cluster on the proximal short arm of chromosome 1 using a highly informative (CA)n repeat. Genomics 1990, 7: 97–102.
Steinfelder H.J., Radovick S., Wondisford F.E. Hormonal regulation of the thyrotropin β-subunit gene by phosphorylation of the pituitary-specific transcription factor Pit-1. Proc. Natl. Acad. Sci. USA. 1992, 89: 5942–5945.
Miyai K., Azukizawa M., Kumahara Y. Familial isolated thyrotropin deficiency with cretinism. N. Engl. J. Med. 1971, 285: 1043–1048.
Dacou-Voutetakis C., Feltquate D.M., Drakopoulou M., Kouridis I.A., Dracopoli N.C. Familial hypothyroidism caused by a nonsense mutation in the thyroid-stimulating hormone β-subunit gene. Am. J. Hum. Genet. 1990, 46: 988–993.
Hayashizaki Y., Hiraoka Y., Tatsumi K., Hashimoto T., Furuyama L, Miyai K., Nishijo K., Matsuura M., Kohno H., Labbe A., Matsubara K. Deoxyribonucleic acid analyses of five families with familial inherited thyroid-stimulating hormone deficiency. J. Clin. Endocrino. Metab. 1990, 71: 792–796.
Medeiros-Neto G., Herodotou D.T., Rajan S., Kornmareddi S., de Lacerda L., Sandrini R., Boguszewski M.C., Hollenberg A.N., Radovick S., Wondisford F.E. A circulating, biologically inactive thyrotropin caused by a mutation in the beta-subunit gene. J. Clin. Invest. 1996, 97: 1250–1256.
Decker B.M., Pfaffle R.N., Pohlenz J., Andler W. Congenital central hypothyroidism due to a homozygous mutation in the thyrotropin β-subunit gene follows an autosomal recessive inheritance. J. Clin. Endocrinol. Metab. 1998, 83: 1762–1765.
Lapthorn A.J., Harris D.C., Littlejohn A., Lustbader J.W., Canfield R.E., Machin K.J., Morgan F.J., Isaacs N.W. Crystal structure of human chorionic gonadotropin. Nature 1994, 369: 455–461.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Collu, R. Genetic aspects of central hypothyroidism. J Endocrinol Invest 23, 125–134 (2000). https://doi.org/10.1007/BF03343692
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF03343692