Skip to main content
Log in

Autocrine and paracrine mechanisms in the early stages of diabetic nephropathy

  • Review Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Steffes M.W., Osterby R., Chavers B., Mauer S.M. Mesangial expansion as a central mechanism for loss of kidney function in diabetic patients. Diabetes 1989, 38: 1077–1081.

    CAS  PubMed  Google Scholar 

  2. Mogensen C.E., Anderson M.J.F. Increased kidney size and glomerular filtration rate in untreated juvenile diabetes: normalization by insulin-treatment. Diabetologia 1975, 11: 221–224.

    CAS  PubMed  Google Scholar 

  3. Cortes P., Dumler F., Goldman J., Levin N.W. Relationship between renal function and metabolic alterations in early streptozotocin-induced Diabetes in rats. Diabetes 1987, 36: 80–87.

    CAS  PubMed  Google Scholar 

  4. Seyer-Hansen K. Renal hypertrophy in experimental Diabetes mellitus. Kidney Int. 1983, 23: 643–646.

    CAS  PubMed  Google Scholar 

  5. Krolewski A.S., Warram J.H., Christlieb A.R., Busick E.J., Kahn C.R. The changing natural history of nephropathy in Type I diabetes Am. J. Med. 1985, 78: 785–794.

    CAS  PubMed  Google Scholar 

  6. Striker G.E., Peten E.P., Carome M.A., Pesce C.M., Schmidt K., Yang C.-W., Elliot S.J., Striker L.J. The kidney disease of Diabetes mellitus (KDDM): a cell and molecular biology approach. Diabetes Metab. Rev. 1993, 9: 37–56.

    CAS  PubMed  Google Scholar 

  7. Rabkin R., Fervenza F.C. Renal hypertrophy and kidney disease in diabetes. Diabetes Metab. Rev. 1996, 12: 217–241.

    CAS  PubMed  Google Scholar 

  8. Klahr S., Schreiner G., Ichikawa I. The progression of renal disease. N. Engl. J. Med. 1988, 318: 1657–1666.

    CAS  PubMed  Google Scholar 

  9. Pugliese G., Tilton R.G., Williamson J.R. Glucose-induced metabolic imbalances in the pathogenesis of diabetic vascular disease. Diabetes Metab. Rev. 1991, 7: 35–59.

    CAS  PubMed  Google Scholar 

  10. Doria A., Warram J.H., Krolewski A.S. Genetic susceptibility to nephropathy in insulin-dependent diabetes: from epidemiology to molecular genetics. Diabetes Metab. Rev. 1995, 11: 287–314.

    CAS  PubMed  Google Scholar 

  11. Ziyadeh F.N. The extracellular matrix in diabetic nephropathy. Am. J. Kidney Dis. 1993, 22: 736–744.

    CAS  PubMed  Google Scholar 

  12. Furness P.N. Extracellular matrix and the kidney. J. Clin. Pathol. 1996, 49: 355–359.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Karttunen T., Risteli J., Autio-Harmainen H., Risteli L. Effect of age and Diabetes on type IV collagen and laminin in human kidney cortex. Kidney Int. 1986, 30: 386–391.

    Google Scholar 

  14. Nerlich A., Schleicher E. Immunohistochemical localization of extracellular matrix components in human diabetic glomerular lesions. Am. J. Pathol. 1991, 139: 889–899.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Mohan P.S., Carter W.G., Spiro R.G. Occurrence of type VI collagen in extracellular matrix of renal glomeruli and its increase in diabetes. Diabetes 1990, 39: 31–37.

    CAS  PubMed  Google Scholar 

  16. Esposito C., Striker L.J., Patel A., Peten E., Liu Z.H., Sakai H., Striker G.E., For the International Study Group for Molecular Study of Kidney Biopsies. Molecular analysis of glomerular diseases in renal biopsies: initial results of a collaborative studies. Proc. Assoc. Am. Physicians 1996, 108: 209–217.

    CAS  PubMed  Google Scholar 

  17. Falk R.J., Scheinman J.I., Mauer S.M., Michael A.F. Polyantigenic expansion of basement membrane constituents in diabetic nephropathy. Diabetes 1983, 32 (Suppl. 2): 34–39.

    PubMed  Google Scholar 

  18. Abrass C.K., Peterson C.V., Raugi G.J. Phenotypic expression of collagen types in mesangial matrix of diabetic and nondiabetic rats. Diabetes 1988, 37: 1695–1702.

    CAS  PubMed  Google Scholar 

  19. Glick A.D., Jacobson H.R., Haralson M.A. Mesangial deposition of type I collagen in human glomerulosclerosis. Hum. Pathol. 1992, 232: 1373–1379.

    Google Scholar 

  20. Shimomura H., Spiro R.G. Studies on macromolecular components of human glomerular basement membrane and alterations in diabetes: decreased levels of heparan sulfate proteoglycan and laminin. Diabetes 1987, 36: 374–381.

    CAS  PubMed  Google Scholar 

  21. Truong L.D., Pindur J., Barrios R., D’Agati V., Lechago J., Suki W., Majesky M. Tenascin is an important component of the glomerular extracellular matrix in normal and pathologic conditions. Kidney Int. 1994, 45: 201–210.

    CAS  PubMed  Google Scholar 

  22. Wu V.Y., Wilson B., Cohen M.P. Disturbances in glomerular basement membrane glycosaminoglycans in experimental diabetes. Diabetes 1987, 36: 679–683.

    CAS  PubMed  Google Scholar 

  23. Parthasarathy N., Spiro R.G. Effect of Diabetes on the glycosaminoglycan component of the human glomerular basement membrane. Diabetes 1982, 31: 738–741.

    CAS  PubMed  Google Scholar 

  24. Kanwar Y.S., Rosenweig L.J., Linker A., Jakubowski M.L. Decreased de novo synthesis of glomerular proteoglycans in diabetes: biochemical and autoradiographic evidence. Proc. Natl. Acad. Sci. USA 1983, 80: 2272–2275.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Templeton D.M. Retention of glomerular basement membrane-proteoglycans accompanying loss of anionic site staining in experimental diabetes. Lab. Invest. 1989, 61: 202–211.

    CAS  PubMed  Google Scholar 

  26. Klein D.J., Oegema T.R. Jr., Brown D.M. Release of glomerular heparan-35SO4 proteoglycan by heparin in streptozotocin-induced diabetic rats. Diabetes 1989, 38: 130–139.

    CAS  PubMed  Google Scholar 

  27. McCarthy K.J., Abrahamson D.R., Bynum K.R., St. John P.L., Couchman J.R. Basement membrane-specific chondroitin sulfate proteoglycan is abnormally associated with the glomerular capillary basement membrane of diabetic rats. J. Histochem. Cytochem. 1994, 42: 473–484.

    CAS  PubMed  Google Scholar 

  28. Ayo S.H., Radnik R.A., Garoni J.A., Glass W.F. II, Kreisberg J.I. High glucose causes an increase in extracellular matrix proteins in cultured mesangial cells. Am. J. Pathol. 1990, 136: 1339–1348.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Ayo S.H., Radnik R.A., Glass W.F. II, Garoni J.A., Rampt E.R., Appling D.R., Kreisberg J.I. Increased extracellular matrix synthesis and mRNA in mesangial cells grown in high-glucose medium. Am. J. Physiol. 1991, 260: F185–F191.

    CAS  PubMed  Google Scholar 

  30. Pugliese G., Pricci F., Pugliese F., Menè P., Lenti L., Andreani D., Galli G., Casini A., Bianchi S., Rotella C.M., Di Mario U. Mechanisms of glucose-enhanced extracellular matrix accumulation in rat glomerular mesangial cells. Diabetes 1994, 43: 478–490.

    CAS  PubMed  Google Scholar 

  31. Pugliese G., Pricci F., Locuratolo N., Romeo G., Romano G., Giannini S., Cresci B., Galli G., Rotella C.M., Di Mario U. Increased activity of the insulin-like growth factor system in mesangial cells cultured in high glucose conditions: relation to glucose-enhanced extracellular matrix production. Diabetologia 1996, 39: 775–784.

    CAS  PubMed  Google Scholar 

  32. Fukui M., Nakamura T., Ebihara I., Shirato I., Tomino Y., Koide H. ECM gene expression and its modulation by insulin in diabetic rats. Diabetes 1992, 41: 1520–1527.

    CAS  PubMed  Google Scholar 

  33. Pugliese G., Pricci F., Pesce C.M., Romeo G., Lenti E., Vetri M., Caltabiano V., Purrello F., Di Mario U. Early, but not advanced, experimental diabetic glomerulopathy is reversed by pancreatic islet transplants. Correlation with glomerular extracellular matrix mRNA levels. Diabetes 1997, 46: 1198–1206.

    CAS  PubMed  Google Scholar 

  34. Roy S., Sala R., Cagliero E., Lorenzi M. Overexpression of fibronectin induced by Diabetes or high glucose: phenomenon with a memory. Proc. Natl. Acad. Sci. USA 1990, 87: 404–408.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Phan-Thanh L., Robert L., Derouette J.C., Labat-Robert J. Increased biosynthesis and processing of fibronectinin fibroblasts from diabetic mice. Proc. Natl. Acad. Sci. USA 1987, 84: 1911–1915.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Zheng F., Striker G.E., Esposito C., Lupia E., Striker L.J. Strain differences rather than hyperglycemia determine the severity of glomerulosclerosis in mice. Kidney Int. 1998, 54: 1999–2007.

    CAS  PubMed  Google Scholar 

  37. Pugliese G., Pricci F., Menè P., Romeo G., Nofroni I., Giannini S., Cresci B., Galli G., Rotella C.M., Di Mario U., Pugliese F. High glucose unmasks a genetic predisposition to enhanced extracellular matrix production in mesangial cells from rats with spontaneous glomerulosclerosis. J. Am. Soc. Nephrol. 1997, 8: 406–414.

    CAS  PubMed  Google Scholar 

  38. Reckelhoff J.F., Tygart V.L., Mitias M.M., Walcott J.L. STZ-induced Diabetes results in decreased activity of glomerular cathepsin and metalloproteinase in rats. Diabetes 1993, 42: 1425–1432.

    CAS  PubMed  Google Scholar 

  39. Nakamura T., Fukui M., Ebihara I., Osada S., Tomino Y., Koide H. Abnormal gene expression of matrix metalloproteinases and their inhibitor in glomeruli from diabetic rats. Renal. Physiol. Biochem. 1994, 17: 316–325.

    CAS  PubMed  Google Scholar 

  40. Del Prete D., Anglani F., Forino M., Ceol M., Fioretto P., Nosadini R., Baggio B., Gambaro G. Down-regulation of glomerular matrix metalloproteinase-2 gene in human NIDDM. Diabetologia 1997, 40: 1449–1454.

    PubMed  Google Scholar 

  41. Kitamura M., Kitamura A., Mitarai T., Maruyama N., Nagasawa R., Kawamura T., Yoshida H., Takahashi T., Sakai O. Gene expression of metalloproteinase and its inhibitor in mesangial cells exposed to high glucose. Biochem. Biophys. Res. Commun. 1992, 185: 1048–1054.

    CAS  PubMed  Google Scholar 

  42. Leehey D.J., Song R.H., Alavi N., Singh A.K. Decreased degradative enzymes in mesangial cells cultured in high glucose media. Diabetes 1995, 44: 929–935.

    CAS  PubMed  Google Scholar 

  43. Wahab N., Mason R.M. Modulation of neutral protease expression in human mesangial cells by hyperglycemic cultures. Biochem. J. 1996, 320: 777–783.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Lubec G., Pollak A. Reduced susceptibility of nonenzymatically glucosylated glomerular basement membrane to proteases: is thickening of diabetic glomerular basement membranes due to reduced proteolytic degradation? Renal. Physiol. 1980, 3: 4–8.

    CAS  PubMed  Google Scholar 

  45. Tarsio J.F., Reger L.A., Furcht L.T. Decreased interaction of fibronectin, type IV collagen and heparin due to nonenzymatic glycation. Implications for Diabetes mellitus. Biochemistry 1987, 26: 1014–1020.

    CAS  PubMed  Google Scholar 

  46. Tarsio J.F., Reger L.A., Furcht L.T. Molecular mechanisms in basement membrane complications in diabetes. Alterations in heparin, laminin and type IV collagen association. Diabetes 1988, 37: 532–539.

    CAS  PubMed  Google Scholar 

  47. Cohen M.P., Saini R., Klepser H., Vasanthi L.G. Fibronectin binding to glomerular basement membrane is altered in diabetes. Diabetes 1987, 36: 758–763.

    CAS  PubMed  Google Scholar 

  48. Steffes M.W., Bilous R.W., Sutherland D.E.R., Mauer S.M. Cell and matrix component of the glomerular mesangium in type I diabetes. Diabetes 1992, 41: 679–684.

    CAS  PubMed  Google Scholar 

  49. Pabst R., Sterzel R.B. Cell renewal of glomerular cell types in normal rats. An autoradiographic analysis. Kidney Int. 1983, 24: 626–631.

    CAS  PubMed  Google Scholar 

  50. Robertson H., Wheeler J., Morley A.R. In vivo bromodeoxyuridine incorporation in normal mouse kidney: immunohistochemical detection and measurement of labelling indices. Histochem J. 1990, 22: 209–214.

    CAS  PubMed  Google Scholar 

  51. Fine L. The biology of renal hypertrophy. Kidney Int. 1986, 29: 619–634.

    CAS  PubMed  Google Scholar 

  52. Beer D.G., Zweifel K.A., Simpson D.P., Pitot H.C. Specific gene expression during compensatory renal hypertrophy in the rat. J. Cell. Physiol. 1987, 131: 29–35.

    CAS  PubMed  Google Scholar 

  53. Pesce C.M., Striker L.J., Peten E.P., Elliot S.J., Striker G.E. Glomerulosclerosis at both early and late stages is associated with increased cell turnover in mice transgenic for growth hormone. Lab. Invest. 1991, 65: 601–605.

    CAS  PubMed  Google Scholar 

  54. Gambaro G., Venturini A.P., Noonan D.M., Fries W., Re G., Gerbisa S., Milanesi C., Pesarini A., Borsatti A., Marchi E., Baggio B. Treatment with a glycosaminoglycan formulation ameliorates experimental diabetic nephropathy. Kidney Int. 1994, 46: 797–806.

    CAS  PubMed  Google Scholar 

  55. Young B.A., Johnson R.J., Alpers C.E., Eng E., Gordon K., Floege J., Couser W.G. Cellular events in the evolution of experimental diabetic nephropathy. Kidney Int. 1995, 47: 935–944.

    CAS  PubMed  Google Scholar 

  56. Nakamura T., Fukui M., Ebihara I., Osada S., Nagaoka I., Tomino Y., Koide H. mRNA expression of growth factors in glomeruli from diabetic rats. Diabetes 1993, 42: 450–456.

    CAS  PubMed  Google Scholar 

  57. Wolf G., Schroeder R., Thaiss F., Ziyadeh F.N., Helmehen U., Stahl R.A. Glomerular expression of p27Kip1 in diabetic db/db mouse: role of hyperglycemia. Kidney Int. 1998, 53: 869–879.

    CAS  PubMed  Google Scholar 

  58. Wolf G., Schroeder R., Ziyadeh F.N., Thaiss F., Zahner G., Stahl R.A. High glucose stimulates expression of p27Kip1 in cultured mouse mesangial cells: relationship to hypertrophy. Am. J. Physiol. 1997, 273: F348–F356.

    CAS  PubMed  Google Scholar 

  59. Schwartzman R.A., Cidlowski J.A. Apoptosis: the biochemistry and molecular biology of programmed cell death. Endocr. Rev. 1993, 14: 133–151.

    CAS  PubMed  Google Scholar 

  60. Evan G.I., Brown L., Whyte M., Harrington E. Apoptosis and the cell cycle. Curr. Opin. Cell. Biol. 1995, 7: 825–834.

    CAS  PubMed  Google Scholar 

  61. Baker A.J., Mooney A., Hughes J., Lombardi D., Johnson R.J., Savill J. Mesangial cell apoptosis: the major mechanism for resolution of glomerular hypercellularity in experimental mesangial proliferative nephritis. J. Clin. Invest. 1994, 94: 2105–2116.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Shimizu A., Kitamura H., Masuda Y., Ishizaki M., Sugisaki Y., Yamanaka N. Apoptosis in the repair process of experimental proliferative glomerulonephritis. Kidney Int. 1995, 47: 114–121.

    CAS  PubMed  Google Scholar 

  63. Savill J., Mooney A., Hughes J. Apoptosis and renal scarring. Kidney Int. 1996, 49: S14–S17.

    Google Scholar 

  64. Sugiyama H., Kashihara N., Makino H., Yamasaki Y., Ota Z. Apoptosis in glomerular sclerosis. Kidney Int. 1996, 49: 103–111.

    CAS  PubMed  Google Scholar 

  65. Lieberthal W., Levine J.S. Mechanisms of apoptosis and its potential role in renal tubular epithelial cell injury. Am. J. Physiol. 1996, 271: F477–F488.

    CAS  PubMed  Google Scholar 

  66. Zhang W., Khanna P., Chan L.L., Campbell G., Ansari N.H. Diabetes-induced apoptosis in rat kidney. Biochem. Mol. Med. 1997, 61: 58–62.

    CAS  PubMed  Google Scholar 

  67. Ortiz A., Ziyadeh F.N., Neilson E.G. Expression of apoptosis-regulatory genes in renal proximal tubular epithelial cells exposed to high ambient glucose and in diabetic kidneys. J. Invest. Med. 1997, 45: 50–56.

    CAS  Google Scholar 

  68. Ishii N., Ogawa Z., Suzuki K., Numakami K., Saruta T., Itoh H. Glucose loading induces DNA fragmentation in rat proximal tubular cells. Metabolism 1996, 45: 1348–1353.

    CAS  PubMed  Google Scholar 

  69. Gibbons G.H., Dzau V.J. The emerging concept of vascular remodeling. N. Engl. J. Med. 1994, 330: 1431–1438.

    CAS  PubMed  Google Scholar 

  70. Frenette P.S., Wagner D.D. Molecular medicine. Adhesion molecules —Part I. N. Engl. J. Med. 1996, 334: 1526–1529.

    CAS  PubMed  Google Scholar 

  71. Ruoslahti E., Obrink B. Common principles in cell adhesion. Exp. Cell. Res. 1996, 227: 1–11.

    CAS  PubMed  Google Scholar 

  72. Yamamoto T., Nakamura T., Noble N.A., Ruoslahti E., Border W.A. Expression of transforming growth factor-β is elevated in human and experimental diabetic nephropathy. Proc. Natl. Acad. Sci. USA 1993, 90: 1814–1818.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Park L.-S., Kiyomoto H., Abboud S.L., Abboud H.E. Expression of transforming growth factor-β and type IV collagen in early streptozotocin-induced diabetes. Diabetes 1997, 46: 473–480.

    CAS  PubMed  Google Scholar 

  74. Bollineni J.S., Reddi A.S. Transforming growth factor-β1 enhances glomerular collagen synthesis in diabetic rats. Diabetes 1993, 42: 1673–1677.

    CAS  PubMed  Google Scholar 

  75. Shankland S.J., Scholey J.W. Expression of transforming growth factor-β1 during diabetic renal hypertrophy. Kidney Int. 1994, 46: 430–442.

    CAS  PubMed  Google Scholar 

  76. Border W.A., Ruoslahti E. Transforming growth factor-β in disease: the dark side of tissue repair. J. Clin. Invest. 1992, 90: 1–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Border W.A., Noble N.A. Transforming growth factor-β in tissue fibrosis. N. Engl. J. Med. 1994, 331: 1286–1292.

    CAS  PubMed  Google Scholar 

  78. Border W.A., Okuda S., Languino L.R., Sporn M.B., Ruoslahti E. Suppression of experimental glomerulonephritis by antiserum against transforming growth factor β1. Nature 1990, 346: 371–374.

    CAS  PubMed  Google Scholar 

  79. Border W.A., Noble N.A., Yamamoto T., Harper J.R., Yamaguchi S., Pierschbacher M.D., Ruoslahti E. Natural inhibitor of transforming growth factor B protects against scarring in experimental kidney disease. Nature 1992, 360: 361–364.

    CAS  PubMed  Google Scholar 

  80. Isaka Y., Akagi Y., Ando Y., Tsujie M., Sudo T., Ohno N., Border W.A., Noble N.A., Kaneda Y., Hori M., Imai E. Gene therapy by transforming growth factor-beta receptor-IgG Fc chimera suppressed extracellular matrix accumulation in experimental glomerulonephritis. Kidney Int. 1999, 55: 465–475.

    CAS  PubMed  Google Scholar 

  81. Pankewycz O.G., Guan J.-X., Bolton W.K., Gomez A., Benedict J.F. Renal TGF-β regulation in spontaneously diabetic NOD mice with correlations in mesangial cells. Kidney Int. 1994, 46: 748–758.

    CAS  PubMed  Google Scholar 

  82. Ziyadeh F.N., Sharma K., Ericksen M., Wolf G. Stimulation of collagen gene expression and protein synthesis in murine mesangial cells by high glucose is mediated by autocrine activation of transforming growth factor-β1. J. Clin. Invest. 1994, 93: 536–542.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Isaka Y., Fujiwara Y., Ueda N., Kaneda Y., Kamada T., Imai E. Glomerulosclerosis induced by in vivo transfection of transforming growth factor-β or platelet-derived growth factor gene into the rat kidney. J. Clin. Invest. 1993, 92: 2597–2601.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Sanderson N., Factor V.M., Nagy P., Kopp J., Kondaiah P., Wakefield L., Roberst A.B., Sporn M.B., Thorgeirsson S.S. Hepatic expression of mature transforming growth factor β1 in transgenic mice results in multiple tissue lesions. Proc. Natl. Acad. Sci. USA 1995, 92: 2572–2576.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Kopp J., Factor V.M., Mozes M., Nagy P., Sanderson N., Bottinger E.P., Klotman P.E., Thorgeirsson S.S. Transgenic mice with increased plasma levels of TGF-β1 develop progressive renal disease. Lab. Invest. 1996, 74: 991–1003.

    CAS  PubMed  Google Scholar 

  86. Ignotz R.A., Massaguè J. Transforming growth factor β stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J. Biol. Chem. 1986, 261: 4337–4345.

    CAS  PubMed  Google Scholar 

  87. Bassols A., Massaguè J. Transforming growth factor β regulates the expression and structure of extracellular matrix chondroitin/dermatan sulfate proteoglycans. J. Biol. Chem. 1988, 263: 3039–3045.

    CAS  PubMed  Google Scholar 

  88. Roberts C.J., Birkenmeier T.M., McQuillan J.J., Akiyaqma S.K., Yamada S.S., Chen W.-T., Yamada K.M., McDonald J.A. Transforming growth factor β stimulates the expression of fibronectin and of both subunits of the human fibronectin receptor by cultured human lung fibroblasts. J. Biol. Chem. 1988, 263: 4586–4592.

    CAS  PubMed  Google Scholar 

  89. Heino J., Ignotz R.A., Hemler M.E., Crouse C., Massaguè J. Regulation of cell adhesion receptors by transforming growth factor-β: concomitant regulation of integrins that share a common β1 subunit. J. Biol. Chem. 1989, 264: 380–388.

    CAS  PubMed  Google Scholar 

  90. Border W.A., Okuda S., Languino L.R., Ruoslahti E. Transforming growth factor-β regulates production of proteoglycans by mesangial cells. Kidney Int. 1990, 37: 689–695.

    CAS  PubMed  Google Scholar 

  91. Creely J.J., DiMari S.J., Howe A.M., Haralson M.A. Effects of transforming growth factor-β on collagen synthesis by normal rat kidney epithelial cells. Am. J. Pathol. 1992, 140: 45–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Pricci F., Pugliese G., Romano G., Romeo G., Locuratolo N., Menè P., Pugliese F., Galli G., Casini A., Rotella C.M., Di Mario U. Insulin-like growth factor (IGF)-I and IGF-II stimulate extracellular matrix production in human mesangial cells. Comparison with transforming growth factor-β (TGF-β). Endocrinology 1996, 137: 879–885.

    CAS  PubMed  Google Scholar 

  93. Tomooka S., Border W.A., Ruoslahti E., Noble W.A. Glomerular matrix accumulation is linked to inhibition of plasmin protease system. Kidney Int. 1992, 42: 1462–1469.

    CAS  PubMed  Google Scholar 

  94. Choi M.E., Kim E.-G., Huang Q., Ballermann B.J. Rat mesangial cell hypertrophy in response to transforming growth factor-β1. Kidney Int. 1993, 44: 948–958.

    CAS  PubMed  Google Scholar 

  95. Battegay E.J., Raines E.W., Seifert R.A., Bowen-Pope D.F., Ross R. TGF-β induces bimodal proliferation of connective tissue cells via complex control of an autocrine PDGF loop. Cell 1990, 63: 515–524.

    CAS  PubMed  Google Scholar 

  96. Okuda S., Languino L.R., Ruoslahti E., Border W.A. Elevated expression of transforming growth factor-β and proteoglycan production in experimental glomerulonephritis. J. Clin. Invest. 1990, 86: 453–462.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Hoffman B.B., Sharma K., Zhu Y., Ziyadeh F.N. Transcriptional activation of transforming growth factor-β1 in mesangial cells culture by high glucose concentration. Kidney Int. 1998, 54: 1107–1116.

    CAS  PubMed  Google Scholar 

  98. Border W.A., Noble N.A. Interactions of transforming growth factor-β and angiotensin II in renal fibrosis. Hypertension 1998, 31 (Part 2): 181–188.

    CAS  PubMed  Google Scholar 

  99. Gibbons G.H., Pratt R.E., Dzau V.J. Vascular smooth muscle cell hypertrophy vs hyperplasia: autocrine transforming growth factor-β1 expression determines growth response to angiotensin II. J. Clin. Invest. 1992, 90: 456–461.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Kagami S., Border W.A., Mille D.E., Noble N.A. Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-β expression in rat mesangial cells. J. Clin. Invest. 1994, 93: 2431–2437.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Noble N.A., Border W.A. Angiotensin II in renal fibrosis: should TGF-beta rather than blood pressure be the therapeutic target? Semin. Nephrol. 1997, 17: 455–466.

    CAS  PubMed  Google Scholar 

  102. Ohno M., Cooke J.P., Dzau V.J., Gibbons G.H. Fluid shear stress induces endothelial transforming growth factor-β transcription and production. J. Clin. Invest. 1997, 95: 1363–1369.

    Google Scholar 

  103. Peters H., Border W.A., Noble N.A. Targeting TGF-beta overexpression in renal disease: maximizing the antifibrotic action of angiotensin II blockade. Kidney Int. 1998, 54: 1570–1580.

    CAS  PubMed  Google Scholar 

  104. Horikoshi S., McCune B.K., Ray P.E., Kopp J.B., Klotman P.E. Water deprivation stimulates transforming growth factor-β2 accumulation in the iuxtaglomerular apparatus of mouse kidney. J. Clin. Invest. 1992, 88: 2117–2122.

    Google Scholar 

  105. Ray P.E., McCune B.K., Gomez R.A., Horikoshi S., Kopp J.B., Klotman P.E. Renal vascular induction of TGF-β2 and renin by potassium depletion. Kidney Int. 1993, 44: 1006–1013.

    CAS  PubMed  Google Scholar 

  106. Veniant M., Menard J., Bruneval P., Morley S., Gonzales M.F., Mullins J. Vascular damage without hypertension in transgenic rats expressing prorenin exclusively in the liver. J. Clin. Invest. 1966, 98: 1996–1970.

    Google Scholar 

  107. Greene E.L., Kren S., Hostetter T.H. Role of aldosterone in the remnant kidney model in the rat. J. Clin. Invest. 1996, 98: 1063–1068.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Feige J.J., Cochet C., Rainey W.E., Mandani C., Chambaz E.M. Type b transforming growth factor affects adrenocortical cell-differential functions. J. Biol. Chem. 1987, 262: 13491–13495.

    CAS  PubMed  Google Scholar 

  109. Gupta P., Franco-Saenz R., Gentry L.E., Mulrow P.J. Transforming growth factor β1 inhibits aldosterone and stimulates adrenal renin in cultured bovine zona glomerulosa cells. Endocrinology 1992, 131: 631–636.

    CAS  PubMed  Google Scholar 

  110. Husted R.F., Matsushita K., Stokes J.B. Induction of resistance to mineralocorticoid hormone in cultured inner medullary collecting duct cells by TGF-β1. Am. J. Physiol. 1994, 267: F767–F775.

    CAS  PubMed  Google Scholar 

  111. Flyvbjerg A., Thorlacius-Ussing O., Naeraa R., Ingerslev J., Ørskov H. Kidney tissue somatomedin C and initial renal growth in diabetic and uninephrectomized rats. Diabetologia 1988, 31: 310–314.

    CAS  PubMed  Google Scholar 

  112. Bach L.A., Jerums G. Effect of puberty on initial kidney growth and rise in kidney IGF-I in diabetic rats. Diabetes 1990, 39: 557–562.

    CAS  PubMed  Google Scholar 

  113. Flyvbjerg A., Frystyk J., Marshall M. Additive increase in kidney insulin-like growth factor I and initial renal enlargement in uninephrectomized-diabetic rats. Horm. Metab. Res. 1990, 22: 516–520.

    CAS  PubMed  Google Scholar 

  114. Flyvbjerg A., Bornfeldt K.E., Marshall S.M., Arnqvist H.J., Ørskov H. Kidney IGF-1 mRNA in initial renal hypertrophy in experimental Diabetes in rats. Diabetologia 1990, 33: 334–338.

    CAS  PubMed  Google Scholar 

  115. Marshall S.M., Flyvbjerg A., Frystyk J., Korsgaard L., Ørskov H. Renal insulin-like growth factor I and growth hormone receptor binding in experimental Diabetes and after unilateral nephrectomy in the rat. Diabetologia 1991, 34: 632–639.

    CAS  PubMed  Google Scholar 

  116. Werner H., Shen-Orr Z., Stannard B., Burguera B., Roberts C.T. Jr., LeRoith D. Experimental Diabetes increases insulin-like growth factor I and II receptor concentration and gene expression in kidney. Diabetes 1990, 39: 1490–1497.

    CAS  PubMed  Google Scholar 

  117. Bach L.A., Stevenson J.L., Allen T.J., Jerums G., Herington A.C. Kidney insulin-like growth factor I mRNA levels are increased in postpubertal diabetic rats. J. Endocrinol. 1991, 129: 5–10.

    CAS  PubMed  Google Scholar 

  118. Catanese V.M., Sciavolino P.J., Lango M.N. Discordant, organ-specific regulation of insulin-like growth factor-I messenger ribonucleic acid in insulin-deficient diabetic rats. Endocrinology 1993, 132: 496–503.

    CAS  PubMed  Google Scholar 

  119. Graubert M.D., Goldstein S., Phillips L.S. Nutrition and somatomedin. XXVII. Total and free IGF-I and IGF binding proteins in rats with streptozotocin induced diabetes. Diabetes 1991, 40: 959–965.

    CAS  PubMed  Google Scholar 

  120. Flyvbjerg A., Kessler U., Dorka B., Funk B., Ørskov H., Kiess W. Transient increase in renal insulin-like growth factor binding proteins during initial renal hypertrophy in experimental Diabetes in rats. Diabetologia 1992, 35: 589–593.

    CAS  PubMed  Google Scholar 

  121. Gelato M.C., Alexander D.A., Marsh K. Differential tissue regulation of insulin-like growth factor binding proteins in experimental Diabetes mellitus in the rat. Diabetes 1992, 41: 1511–1519.

    CAS  PubMed  Google Scholar 

  122. Ooi G.T., Tseng L.Y.-H., Tran M.Q., Rechler M. Insulin rapidly decreases insulin-like growth factor-binding protein-1 gene transcription in streptozotocin-diabetic rats. Mol. Endocrinol. 1992, 6: 2219–2228.

    CAS  PubMed  Google Scholar 

  123. Clemmons D.R. IGF binding proteins and their functions. Mol. Reprod. Dev. 1993, 35: 368–375.

    CAS  PubMed  Google Scholar 

  124. Landau D., Chin E., Bondy C., Domene H., Roberts C.T. Jr, Gronbaek H., Flyvbjerg A., LeRoith D. Expression of insulin-like growth factor-binding proteins in the rat kidney: effects of long-term diabetes. Endocrinology 1995, 136: 1835–1842.

    CAS  PubMed  Google Scholar 

  125. Cohick W.S., Clemmons D.R. The insulin-like growth factors. Annu. Rev. Physiol. 1993, 55: 131–153.

    CAS  PubMed  Google Scholar 

  126. Hammerman M.R., Miller S.B. The growth hormone insulin-like growth factor axis in kidney revisited. Am. J. Physiol. 1993, 265: F1–F14.

    CAS  PubMed  Google Scholar 

  127. Doi T., Hattori M., Agodoa L.Y., Sato T., Yoshida H., Striker L.J., Striker G.E. Glomerular lesions in nonobese diabetic mouse: before and after the onset of hyperglycemia. Lab. Invest. 1990, 63: 204–212.

    CAS  PubMed  Google Scholar 

  128. Elliot S.J., Striker L.J., Hattori M., Yang C.-W., He C.-J., Peten E.P., Striker G.E. Mesangial cells from diabetic NOD mice constitutively secrete increased amounts of insulin-like growth factor I. Endocrinology 1993, 133: 1783–1788.

    CAS  PubMed  Google Scholar 

  129. Oemar B.S., Foellmer H.G., Hodgdon-Anandant L., Rosenzweig S.A. Regulation of insulin-like growth factor I receptors in diabetic mesangial cells. J. Biol. Chem. 1991, 266: 2369–2373.

    CAS  PubMed  Google Scholar 

  130. Doi T., Striker L.J., Elliot S.J., Conti F.G., Striker G.E. Insulin-like growth factor-1 is a progression factor for human mesangial cells. Am. J. Pathol. 1989, 134: 395–404.

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Olashaw N.E., Van Wyk J.J., Pledger W.J. Control of late G0G1 progression and protein modification by SmC/IGF I. Am. J. Physiol. 1987, 253: C575–C579.

    CAS  PubMed  Google Scholar 

  132. Moran A., Brown D.M., Kim Y., Klein D.J. Effects of IGF-I and glucose on protein and proteoglycan synthesis by human fetal mesangial cells in culture. Diabetes 1991, 40: 1346–1354.

    CAS  PubMed  Google Scholar 

  133. Watanabe Y., Kashihara N., Makino H., Kanwar Y.S. Modulation of glomerular proteoglycans by insulin-like growth factor-1. Kidney Int. 1992, 41: 1262–1273.

    CAS  PubMed  Google Scholar 

  134. Tamaroglio T.A., Lo C.S. Regulation of fibronectin by insulin-like growth factor-I in cultured rat thoracic aortic smooth muscle cells and glomerular mesangial cells. Exp. Cell Res. 1994, 215: 338–346.

    CAS  PubMed  Google Scholar 

  135. Hirschberg R., Kopple J.D. Evidence that insulin-like growth factor I increases renal plasma flow and glomerular filtration rate in fasted rats. J. Clin. Invest. 1989, 83: 326–330.

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Hirschberg R., Kopple J.D., Blantz R.C., Tucker B.J. Effects of recombinant human insulin-like growth factor I on glomerular dynamics in the rat. J. Clin. Invest. 1991, 87: 1200–1206.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Doi T., Striker L.J., Quaife C., Conti F.G., Palmiter R., Behringer R., Brinster R.L., Striker G.E. Progressive glomerulosclerosis develops in transgenic mice chronically expressing growth hormone and growth hormone releasing factor but not in those expressing insulin like growth factor-I. Am. J. Pathol. 1988, 131: 398–403.

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Doi T., Striker L.J., Kimata K., Peten E.P., Yamada Y., Striker G.E. Glomerulosclerosis in mice transgenic for growth hormone increased mesangial extracellular matrix is correlated with kidney mRNA levels. J. Exp. Med. 1991, 173: 1287–1290.

    CAS  PubMed  Google Scholar 

  139. Jacot T.A., Striker G.E., Stetler-Stevenson M., Striker L.J. Mesangial cells from transgenic mice with progressive glomerulosclerosis exhibit stable, phenotypic changes including undetectable MMP-9 and increased type IV collagen. Lab. Invest. 1996, 75: 791–799.

    CAS  PubMed  Google Scholar 

  140. Kjeldsen H., Hansen P., Lundbaek K. Twenty-four hour serum growth hormone levels in maturity onset diabetes. Diabetes 1995, 24: 977–982.

    Google Scholar 

  141. Hirschberg R., Kopple J.D. Effects of growth hormone on GFR and renal plasma flow in man. Kidney Int. 1987, 32 (Suppl. 22): S21–S24.

    Google Scholar 

  142. Pedersen M.M., Christensen S.E., Christiansen J.S., Pedersen E.B., Mogensen C.E., Ørskov H. Acute effects of a somatostatin analogue on kidney function in type I diabetic patients. Diabetic Med. 1990, 7: 304–309.

    CAS  PubMed  Google Scholar 

  143. Stegeman C.A., Dullaart R.P.F., Meijer S., Marbach P., Sluiter W.J. Acute renal effects of somatostatin analogue, octreotide, in insulin-dependent diabetic patients: antagonism by low dose glucagon. Diab. Nutr. Metab. 1993, 6: 87–95.

    Google Scholar 

  144. Tannenbaum G.S. Growth hormone secretory dynamics in streptozotocin diabetes: evidence of a role for exogenous circulating somatostatin. Endocrinology 1981, 108: 76–82.

    CAS  PubMed  Google Scholar 

  145. Bornfeldt K.E., Arnquist H.J., Enberg B., Mathews L.S., Norstedt G. Regulation of insulin-like growth factor I and growth hormone receptor gene expression by Diabetes and nutritional state in rat tissues. J. Endocrinol. 1989, 122: 651–656.

    CAS  PubMed  Google Scholar 

  146. Flyvbjerg A., Frystyk J., Thorlacius-Ussing O., Ørskov H. Somatostatin analogue administration prevents increase in kidney somatomedin C and initial renal growth in diabetic and uninephrectomized rats. Diabetologia 1989, 32: 261–265.

    CAS  PubMed  Google Scholar 

  147. Gronbæk H., Nielsen B., Frystyck J., Flyvbjerg A., Ørskov H. Effect of lanreotide, a somatostatin analogue, on diabetic renal hypertrophy, kidney and serum IGF-I and IGF-binding proteins. Exp. Nephrol. 1996, 4: 295–303.

    PubMed  Google Scholar 

  148. Flyvbjerg A., Marshall S.M., Frystyk J., Hansen K.W., Harris A.G., Ørskov H. Octreotide administration in diabetic rats: effects on renal hypertrophy and urinary albumin excretion. Kidney Int. 1992, 41: 805–812.

    CAS  PubMed  Google Scholar 

  149. Flyvbjerg A., Bennet W.F., Rash R., Kopchick J.J., Scarlett J.A. Inhibitory effect of a growth hormone receptor antagonist (G120K-PEG) on renal enlargement, glomerular hypertrophy and urinary albumin excretion in experimental Diabetes in mice. Diabetes 1999, 48: 377–382.

    CAS  PubMed  Google Scholar 

  150. Flyvbjerg A., Frystyk J., Østerby R., Ørskov H. Kidney IGF-I and renal hypertrophy in GH-deficient diabetic dwarf rats. Am. J. Physiol. 1992, 262: E956–E962.

    CAS  PubMed  Google Scholar 

  151. Chen N.Y., Chen W.Y., Bellush L., Yang C.W., Striker L.J., Striker G.E., Kopchick J.J. Effects of streptozotocin treatment in growth hormone (GH) and GH antagonist transgenic mice. Endocrinology 1995, 136: 660–667.

    CAS  PubMed  Google Scholar 

  152. Esposito C., Liu Z.H., Striker G.E., Phillips C., Chen N.Y., Chen W.Y., Kopchick J.J., Striker L.J. Inhibition of diabetic nephropathy by a GH antagonist: a molecular analysis. Kidney Int. 1996, 50: 506–514.

    CAS  PubMed  Google Scholar 

  153. Yang C.W., Striker G.E., Chen W.Y., Kopchick J.J., Striker L.J. Differential expression of glomerular extracellular matrix and growth factor mRNA in rapid and slowly progressive glomerulosclerosis: studies in mice transgenic for native or mutated growth hormone. Lab. Invest. 1997, 76: 467–476.

    CAS  PubMed  Google Scholar 

  154. Stout R.W. Hyperinsulinemia and atherosclerosis. Diabetes 1996, 45 (Suppl. 3): S45–S46.

    CAS  PubMed  Google Scholar 

  155. Anderson P.W., Zhang X.Y., Tian J., Correale J.D., Xi X.P., Yang D., Graf K., Law R.E., Hsueh W.A. Insulin and angiotensin II are additive in stimulating TGF-beta 1 and matrix mRNAs in mesangial cells. Kidney Int. 1996, 50: 745–753.

    CAS  PubMed  Google Scholar 

  156. Pandolfi A., Iacoviello L., Capani F., Vitacolonna E., Donati M.B., Consoli A. Glucose and insulin independently reduce the fibrinolytic potential of human vascular smooth muscle cells in culture. Diabetologia 1996, 39: 1425–1431.

    CAS  PubMed  Google Scholar 

  157. Schmetterer L., Muller M., Fasching P., Diepolder C., Gallenkamp A., Zanaschka G., Findl O., Strenn K., Mensik C., Tschernko E., Eichler H.G., Wolzt M. Renal and ocular hemodynamic effects of insulin. Diabetes 1997, 46: 1868–1874.

    CAS  PubMed  Google Scholar 

  158. Fagerudd J.A., Groop P.H., Honkanen E., Teppo A.M., Gronhangen-Riska C. Urinary excretion of TGF-beta 1, PDGF-BB and fibronectin in insulin-dependent Diabetes mellitus patients. Kidney Int. 1997, 63: S195–S197.

    CAS  Google Scholar 

  159. Gesualdo L., Pinzani M., Floriano J.J., Hassan M.O., Nagy N.U., Schena F.P., Emancipator S.N., Abboud H.E. Platelet-derived growth factor expression in mesangial proliferative glomerulonephritis. Lab. Invest. 1991, 65: 160–167.

    CAS  PubMed  Google Scholar 

  160. Gesualdo I., Di Paolo S., Milani S., Pinzani M., Grappone C., Ranieri E., Pannarale G., Schena F.P. Expression of platelet-derived growth factor receptors in normal and diseased human kidney. An immunohistochemistry and in situ hybridization study. J. Clin. Invest. 1994, 94: 50–58.

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Di Paolo S., Gesualdo L., Ranieri E., Grandaliano G., Schena F.P. High glucose concentrations induce the overexpression of transforming growth factor-beta through the activation of a platelet-derived growth factor loop in human mesangial cells. Am. J. Pathol. 1996, 149: 2095–2106.

    PubMed Central  PubMed  Google Scholar 

  162. Phillips A.O., Steadman R., Topley N., Williams J.D. Elevated D-glucose concentrations modulate TGF-beta 1 synthesis by human cultured renal proximal tubular cells. The permissive role of platelet-derived growth factor. Am. J. Pathol. 1995, 147: 362–374.

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Floege J., Eng E., Young B.A., Alpers C.E., Barrett T.B., Bowen-Pope D.F., Johnson R.J. Infusion of platelet-derived growth factor and basic fibroblast growth factor induces selective glomerular messangial cell proliferation and matrix accumulation in rats. J. Clin. Invest. 1993, 92: 2952–2962.

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Johnson R.J., Raines E., Floege J., Yoshimura A., Protzl P., Alpers C.E., Ross R. Inhibition of mesangial cell proliferation and matrix expansion in glomerulonephritis in the rat by antibody to platelet-derived growth factor. J. Exp. Med. 1992, 175: 1413–1416.

    CAS  PubMed  Google Scholar 

  165. Shultz P.J., Di Corleto P.E., Silver B.J., Abboud H.E. Mesangial cells express PDGF mRNAs and proliferate in response to PDGF. Am. J. Physiol. 1988, 255: F674–F679.

    CAS  PubMed  Google Scholar 

  166. Doi T., Vlassara H., Kirstein M., Yamada Y., Striker G.E., Striker L.J. Receptor-specific increase in extracellular matrix production in mouse mesangial cells by advanced glycosylation end products is mediated via platelet-derived growth factor. Proc. Natl. Acad. Sci. USA 1992, 89: 2873–2887.

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Floege J., Eng E., Lindner V., Young B.A., Reidy M.A., Johnson R.J. Rat glomerular mesangial cells synthesize basic FGF: release, upregulated synthesis and mitogenicity in mesangial proliferative glomerulonephritis. J. Clin. Invest. 1992, 90: 2362–2369.

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Battegay E.J. Angiogenesis: mechanistic insights, neovascular diseases, and therapeutic prospects. J. Mol. Med. 1995, 73: 333–346.

    CAS  PubMed  Google Scholar 

  169. Miller S.B., Rogers S.A., Estes C.E., Hammerman M.R. Increased distal nephron EGF content and altered distribution of peptide in compensatory renal hypertrophy. Am. J. Physiol. 1992, 262: F1032–F1038.

    CAS  PubMed  Google Scholar 

  170. Hwang D.L., Lev-Ran A. Epidermal growth factor in serum, urine, submandibular glands and kidneys of diabetic mice. Life Sci. 1990, 47: 679–685.

    CAS  PubMed  Google Scholar 

  171. Hwang D.L., Lev-Ran A., Tay Y.C., Chen C.R, Dev N. Epidermal growth factor excretion and receptor binding in diabetic rats. Life Sci. 1989, 44: 407–416.

    CAS  PubMed  Google Scholar 

  172. Kawaguchi M., Kamiya Y., Ito J., Fuji T., Hayakawa F., Sakuma N., Fujinami T. Excretion of epidermal growth factor in non-insulin dependent Diabetes mellitus. Life Sci. 1993, 52: 1181–1186.

    CAS  PubMed  Google Scholar 

  173. Mattila A.-L., Pasternack A., Viinika L., Perheentupa J. Subnormal concentrations of urinary epidermal growth factor in patients with kidney disease. J. Clin. Endocrinol. Metab. 1986, 62: 1180–1183.

    CAS  PubMed  Google Scholar 

  174. Williams B. A potential role for angiotensin II-induced vascular endothelial growth factor expression in the pathogenesis of diabetic nephropathy? Miner. Electrolyte Metab. 1998, 24: 400–405.

    CAS  PubMed  Google Scholar 

  175. Grone H.J., Simon M., Grone E.F. Expression of vascular endothelial growth factor in renal vascular disease and renal allografts. J. Pathol. 1995, 177: 259–267.

    CAS  PubMed  Google Scholar 

  176. Wasada T., Kawahara R., Katsumori K., Naruse M., Omori Y. Plasma concentration of immunoreactive vascular endothelial growth factor and its relation to smoking. Metabolism 1998, 47: 27–30.

    CAS  PubMed  Google Scholar 

  177. Ferrara N., Davis-Smith T. The biology of vascular endothelial growth factor. Endocr. Rev. 1997, 18: 4–25.

    CAS  PubMed  Google Scholar 

  178. Trachman H., Futterweit S., Franki N., Singhal P.C. Effect of vascular endothelial growth factor on nitric oxide production by cultured rat mesangial cells. Biochem. Biophys. Res. Commun. 1998, 245: 443–446.

    Google Scholar 

  179. Fukui M., Nakamura T., Ebihara I., Osada S., Tomino Y., Masaki T., Goto K., Furuiki Y., Koide H. Gene expression for endothelins and their receptors in glomeruli of diabetic rats. J. Lab. Clin. Med. 1993, 122: 149–156.

    CAS  PubMed  Google Scholar 

  180. Fukui M., Nakamura T., Ebihara I., Makita Y., Osada S., Tomino Y., Koide H. Effects of enalapril on endothelin-1 and growth factor gene expression in diabetic rat glomeruli. J. Lab. Clin. Med. 1994, 123: 763–768.

    CAS  PubMed  Google Scholar 

  181. Shin S.J., Lee Y.J., Lin S.R., Tan M.S., Lai Y.M., Tsai J.M. Decrease of renal endothelin 1 content and gene expression in diabetic rats with moderate hyperglycemia. Nephron. 1995, 70: 486–493.

    CAS  PubMed  Google Scholar 

  182. Lam H.C., Lee J.K., Chiang H.T., Koh S.J., Han T.M., Lu C.C., Yang C.Y., Hao L.J. Does endothelin play a role in the pathogenesis of early diabetic nephropathy. J. Cardiovasc. Pharmacol. 1995, 26: S479–S481.

    CAS  PubMed  Google Scholar 

  183. Lee Y.J., Shin S.J., Tsai J.M. Increased urinary endothelin-1-like immunoreactivity excretion in NIDDM patients with albuminuria. Diabetes Care 1994, 17: 263–266.

    CAS  PubMed  Google Scholar 

  184. De Mattia G., Cassone-Faldetta M., Bellini C., Bravi M.C., Laurenti O., Baldoncini R., Santucci A., Ferri C. Role of plasma and urinary endothelin-1 in early diabetic and hypertensive nephropathy. Am. J. Hypertens. 1998, 11: 983–988.

    PubMed  Google Scholar 

  185. Gomez-Garre D., Ruiz-Ortega M., Ortego M., Largo R., Lopez-Armada M.J., Plaza J.J., Gonzalez E., Egido J. Effects and interactions of endothelin-1 and angiotensin II on matrix protein expression and synthesis and mesangial cell growth. Hypertension 1996, 27: 885–892.

    CAS  PubMed  Google Scholar 

  186. Hocher B., Lun A., Priem F., Neumayer H.H., Raschack M. Renal endothelin system in diabetes: comparison of angiotensin-converting enzyme inhibition and endothelin-A antagonism. J. Cardiovasc. Pharmacol. 1998, 31: S492–S495.

    CAS  PubMed  Google Scholar 

  187. Nakamura T., Ebihara I., Tomino Y., Koide H. Alteration of growth-related proto-oncogene expression in diabetic glomeruli by a specific endothelin receptor A antagonist. Nephrol. Dial. Transplant. 1996, 11: 1528–1531.

    CAS  PubMed  Google Scholar 

  188. Benigni A., Colosio V., Brena C., Bruzzi I., Bertani T., Remuzzi G. Unselective inhibition of endothelin receptor reduces renal dysfunction in experimental diabetes. Diabetes 1998, 47: 450–456.

    CAS  PubMed  Google Scholar 

  189. Lin S., Chen J., Zhu W. Existence of an abnormal nitric oxide metabolism seen in glomeruli and inner medullary collecting duct in diabetic rat. Chin. Med. J. 1997, 110: 515–519.

    CAS  PubMed  Google Scholar 

  190. Komers R., Allen T.J., Cooper M.E. Role of endothelium-derived nitric oxide in the pathogenesis of the renal hemodynamic changes of experimental diabetes. Diabetes 1994, 43: 1190–1197.

    CAS  PubMed  Google Scholar 

  191. Sugimoto H., Shikata K., Matsuda M., Kushiro M., Hayashi Y., Hiragushi K., Wada J., Makino H. Increased expression of endothelial cell nitric oxide synthase (ecNOS) in afferent and glomerular endothelial cells is involved in glomerular hyperfiltration of diabetic rats. Diabetologia 1998, 41: 1426–1434.

    CAS  PubMed  Google Scholar 

  192. Choi K.C., Lee S.C., Kim S.W., Kim N.H., Lee J.U., Kang Y.J. Role of nitric oxide in the pathogenesis of diabetic nephropathy in streptozotocin-induced diabetic rats. Korean J. Int. Med. 1999, 14: 32–41.

    CAS  Google Scholar 

  193. Trachtman H., Futterweit S., Crimmins D.L. High glucose inhibits nitric oxide production by cultured rat mesangial cells. J. Am. Soc. Nephrol. 1997, 8: 1276–1282.

    CAS  PubMed  Google Scholar 

  194. Trachtman H., Koss I., Bogart M., Abramowitz J., Futterweit S., Franki N., Singhal P.C. High glucose enhances growth factor-stimulated nitric oxide production by cultured rat mesangial cells. Res. Commun. Mol. Pathol. Pharmacol. 1998, 100: 213–225.

    CAS  PubMed  Google Scholar 

  195. Amore A., Cirina P., Mitola S., Peruzzi L., Gianoglio B., Rabbone I., Sacchetti C., Cerutti F., Grillo C., Coppo R. Nonenzymatically glycated albumin (Amadori adducts) enhances nitric oxide synthase activity and gene expression in endothelial cells. Kidney Int. 1997, 51: 27–35.

    CAS  PubMed  Google Scholar 

  196. Wessels J., Peake P., Pussel B.A., Macdonald G.J. Nitric oxide inhibition in a spontaneously hypertensive rat model of diabetic nephropathy. Clin. Exp. Pharmacol. Physiol. 1997, 24: 451–453.

    CAS  PubMed  Google Scholar 

  197. Soulis T., Cooper M.E., Sastra S., Thallas V., Panagiotopulos S., Bjerrum O.J., Jerums G. Relative contributions of advanced glycation and nitric oxide synthase inhibition to aminoguanidine-mediated renoprotection in diabetic rats. Diabetologia 1997, 40: 1141–1151.

    CAS  PubMed  Google Scholar 

  198. Lubec B., Aufricht C., Amann G., Kitzmuller E., Hoger H. Arginine reduces kidney collagen accumulation, crosslinking, lipid peroxidation, glycoxidation, kidney weight and albuminuria in the diabetic kk mouse. Nephron 1997, 75: 213–218.

    CAS  PubMed  Google Scholar 

  199. Williams B., Schrier R.W. Glucose-induced protein kinase C activity regulates arachidonic acid release and prostaglandin production by cultured rat mesangial cells. J. Clin. Invest. 1993, 92: 2889–2896.

    CAS  PubMed Central  PubMed  Google Scholar 

  200. Kreisberg J.I., Patel P.Y. The effects of insulin, glucose and Diabetes on prostaglandin production by rat kidney glomeruli and cultured glomerular mesangial cells. Prostaglandis Leukot Med. 1983, 11: 431–442.

    CAS  Google Scholar 

  201. Pricci F., Pugliese G., Menè P., Romeo G., Romano G., Galli G., Casini A., Rotella C.M., Di Mario U., Pugliese F. Regulatory role of eicosanoids in extracellular matrix overproduction induced by prolonged exposure to high glucose concentrations in cultured rat mesangial cells. Diabetologia 1996, 39: 1055–1062.

    CAS  PubMed  Google Scholar 

  202. Craven P.A., Caines M.A., DeRubertis F.R. Sequential alterations in glomerular prostaglandin and thromboxane synthesis in diabetic rats: relationship to the hyperfiltration of early diabetes. Metabolism 1987, 36: 95–103.

    CAS  PubMed  Google Scholar 

  203. Zahner G., Disser M., Thaiss F., Wolf G., Schoeppe W., Stahl R.A.K. The effect of prostaglandin E2 on mRNA expression and secretion of collagen I, III, and IV and fibronectin in cultured rat mesangial cells. J. Am. Soc. Nephrol. 1994, 4: 1778–1785.

    CAS  PubMed  Google Scholar 

  204. Bruggeman L.A., Pellicoro J.A., Horigan E.H., Klotman P.E. Thromboxane and prostacyclin differentially regulate murine extracellular matrix gene expression. Kidney Int. 1993, 43: 1219–1225.

    CAS  PubMed  Google Scholar 

  205. Fine A., Polikis C.F., Donahue L.P., Smith B.D., Goldstein R.H. The differential effect of prostaglandin E2 on transforming growth factor-β and insulin-induced collagen formation in lung fibroblasts. J. Biol. Chem. 1989, 29: 16988–16991.

    Google Scholar 

  206. Ledbetter S., Copeland E.J., Noonan D., Vogeli G., Hassell J.R. Altered steady-state mRNA levels of basement membrane proteins in diabetic mouse kidneys and thromboxane synthase inhibition. Diabetes 1990, 39: 196–203.

    CAS  PubMed  Google Scholar 

  207. Juhan-Vague I., Alessi M.C., Vague P. Thrombogenic and fibrinolytic factors and cardiovascular risk in non-insulin-dependent Diabetes mellitus. Ann. Med. 1996, 28: 371–380.

    CAS  PubMed  Google Scholar 

  208. Rondeau E., Mougenot B., Lacave R., Peraldi M.N., Kruithof E.K., Sraer J.D. Plasminogen activator inhibitor 1 in renal fibrin deposits of human nephropathies. Clin. Nephrol. 1990, 33: 55–60.

    CAS  PubMed  Google Scholar 

  209. Yamamoto T., Noble N.A., Cohen A.H., Nast C.C., Hishida A., Gold L.I., Border W.A. Expression of transforming growth factor-β isoforms in human glomerular diseases. Kidney Int. 1996, 49: 461–469.

    CAS  PubMed  Google Scholar 

  210. Tomooka S., Border W.A., Marshall B.C., Noble N.A. Glomerular matrix accumulation is linked to inhibition of plasmin protease system. Kidney Int. 1992, 42: 1462–1469.

    CAS  PubMed  Google Scholar 

  211. Loskutoff D.J., Sawdey M., Keeton M., Schneiderman J. Regulation of PAI-1 gene expression in vivo. Thromb. Haemost. 1993, 70: 135–137.

    CAS  PubMed  Google Scholar 

  212. Feng L., Tang W.W., Loskutoff D.J., Wilson C.B. Dysfunction of glomerular fibrinolysis in experimental antiglomerular basement membrane antibody glomerulonephritis. J. Am. Soc. Nephrol. 1993, 3: 1753–1764.

    CAS  PubMed  Google Scholar 

  213. Fisher E.J., McLennan S.V., Yue D.K., Turtle J.R. High glucose reduces generation of plasmin activity by mesangial cells. Microvasc. Res. 1997, 53: 173–178.

    CAS  PubMed  Google Scholar 

  214. Oikawa T., Freeman M., Lo W., Vaughan D.E., Fogo A. Modulation of plasminogen activator inhibitor-1 in vo: a new mechanism for the anti-fibrotic effect of renin-angiotensin inhibition. Kidney Int. 1997, 51: 164–172.

    CAS  PubMed  Google Scholar 

  215. Kagami S., Kuhara T., Okada K., Kuroda Y., Border W.A., Noble N.A. Dual effects of angiotensin II on the plasminogen/plasmin system in rat mesangial cells. Kidney Int. 1997, 51: 664–671.

    CAS  PubMed  Google Scholar 

  216. Eitzman D.T., McCoy R.D., Zheng X., Fay W.P., Shen T, Ginsburg D., Simon R.H. Bleomycin induced pulmonary fibrosis in transgenic mice that either lack or overexpress the murine plasminogen activator inhibitor-1 gene. J. Clin. Invest. 1996, 97: 232–237.

    CAS  PubMed Central  PubMed  Google Scholar 

  217. Baricos W.H., Cortez S.L., el-Dahr S.S., Schnaper H.W. ECM degradation by cultured human mesangial cells is mediated by a PA/plasmin/MMP-2 cascade. Kidney Int. 1995, 47: 1039–1047.

    CAS  PubMed  Google Scholar 

  218. Jin D.K., Fish A.J., Wayner E.A., Mauer M., Setty S., Tsillabary E., Kim Y. Distribution of integrin subunits in human diabetic kidneys. J. Am. Soc. Nephrol. 1996, 7: 2636–2645.

    CAS  PubMed  Google Scholar 

  219. Regoli M., Bendayan M. Alterations in the expression of the alpha 3 beta 1 integrin in certain membrane domains of the glomerular epithelial cells (podocytes) in Diabetes mellitus. Diabetologia 1997, 40: 15–22.

    CAS  PubMed  Google Scholar 

  220. Roth T., Podestà F., Stepp M.A., Boeri D., Lorenzi M. Integrin overexpression induced by high glucose and by human diabetes: potential pathway to cell dysfunction in diabetic microangiopathy. Proc. Natl. Acad. Sci. USA 1993, 90: 9640–9644.

    CAS  PubMed Central  PubMed  Google Scholar 

  221. Hirata K., Shikata K., Matsuda M., Akiyama K., Sugimoto H., Kushiro M., Makino H. Increased expression of selectins in kidneys of patients with diabetic nephropathy. Diabetologia 1998, 41: 185–192.

    CAS  PubMed  Google Scholar 

  222. Knudsen H., Andersen C.B., Ladefoged S.D. Expression of the intercellular adhesion molecule-3 (ICAM-3) in human renal tissue with relation to kidney transplant and various inflammatory diseases. APMIS 1995, 103: 593–596.

    CAS  PubMed  Google Scholar 

  223. Matsui H., Suzuki M., Tsukuda R., Iida K., Miyasaka M., Ikeda H. Expression of ICAM-1 on glomeruli is associated with progression of diabetic nephropathy in a genetically-obese diabetic rat, Wistar fatty. Diabetes Res. Clin. Pract. 1996, 32: 1–9.

    CAS  PubMed  Google Scholar 

  224. Seron D., Cameron J.S., Haskard D.O. Expression of VCAM-1 in the normal and diseased kidney. Nephrol. Dial. Transplant 1991, 6: 917–922.

    CAS  PubMed  Google Scholar 

  225. Keogh R.J., Dunlop M.E., Larkins R.G. Effect of inhibition of aldose reductase on glucose flux, diacylglycerol formation, protein kinase C, and phospholipase A2 activation. Metabolism 1997, 46: 41–47.

    CAS  PubMed  Google Scholar 

  226. Ishii H., Tada H., Isogai S. An aldose reductase inhibitor prevents glucose-induced increase in transforming growth factor-beta and protein kinase C activity in cultured mesangial cells. Diabetologia 1998, 41: 362–364.

    CAS  PubMed  Google Scholar 

  227. Daniels B.S., Hostetter T.H. Aldose reductase inhibition and glomerular abnormalities in diabetic rats. Diabetes 1989, 38: 981–986.

    CAS  PubMed  Google Scholar 

  228. Kikkawa R., Umemura K., Haneda M., Arimura T., Ebata K., Shigeta Y. Evidence for existence of polyol pathway in cultured rat mesangial cells. Diabetes 1987, 36: 240–243.

    CAS  PubMed  Google Scholar 

  229. Shah V.O., Dorin R.I., Sun Y., Braun M., Zager P.G. Aldose reductase gene expression is increased in diabetic nephropathy. J. Clin. Endocrinol. Metab. 1997, 82: 2294–2298.

    CAS  PubMed  Google Scholar 

  230. Shah V.O., Scavini M., Nikolic J., Sun Y., Vai S., Griffith J.K., Dorin R.I., Stidley C., Yacoub M., Vander Jagt D.L., Eaton R.P., Zager P.G. Z-2 microsatellite allele is linked to increased expression of the aldose reductase gene in diabetic nephropathy. J. Clin. Endocrinol. Metab. 1998, 83: 2886–2891.

    CAS  PubMed  Google Scholar 

  231. Bank N., Mower P., Aynedjian H.S., Wilkes B.M., Silverman S. Sorbinil prevents glomerular hyperperfusion in diabetic rats. Am. J. Physiol. 1989, 256: F1000–1006.

    CAS  PubMed  Google Scholar 

  232. Tilton R.G., Chang K., Pugliese G., Eades D.M., Province M.A., Sherman W.R., Kilo C., Williamson J.R. Prevention of hemodynamic and vascular (albumin) filtration changes in diabetic rats by aldose reductase inhibitors. Diabetes 1989, 38: 1258–1270.

    CAS  PubMed  Google Scholar 

  233. Pugliese G., Tilton R.G., Speedy A., Chang K., Province M.A., Kilo C., Williamson J.R. Vascular filtration function in galactose-fed versus diabetic rats: the role of polyol pathway activity. Metabolism 1990, 39: 690–697.

    CAS  PubMed  Google Scholar 

  234. Donnelly S.M., Zhou X.P., Huang J.T., Whiteside C.I. Prevention of early glomerulopathy with tolrestat in the streptozotocin-induced diabetic rat. Biochem. Cell Biol. 1996, 74: 355–362.

    CAS  PubMed  Google Scholar 

  235. Tilton R.G., Kawamura T., Chang K.C., Ido Y., Bjercke R.J., Stephan C.C., Brock T.A., Williamson J.R. Vascular dysfunction induced by elevated glucose levels in rats is mediated by vascular endothelial growth factor. J. Clin. Invest. 1997, 99: 2192–2202.

    CAS  PubMed Central  PubMed  Google Scholar 

  236. Mauer S.M., Steffes M.W., Azar S., Brown D.M. Effects of sorbinil on glomerular structure and function in long-term diabetic rats. Diabetes 1989, 38: 839–846.

    CAS  PubMed  Google Scholar 

  237. Tilton R.G., Pugliese G., LaRose L.S., Faller A.M., Chang K., Province M.A., Williamson J.R. Discordant effects of the aldose reductase inhibitor, sorbinil, on vascular structure and function in chronically diabetic and galactosemic rats. J. Diab. Compl. 1991, 5: 230–237.

    CAS  Google Scholar 

  238. Das B., Srivastava S.K. Activation of aldose reductase in human tissues. Diabetes 1985, 1145–1151.

    Google Scholar 

  239. Lorenzi M., Toledo S., Boss G.R., Lane M.J., Montisano D.F. The polyol pathway and glucose-6-phosphate in human endotelial cells cultured in high glucose concentrations. Diabetologia 1987, 30: 222–227.

    CAS  PubMed  Google Scholar 

  240. Grahary A., Luo J., Gong Y., Chakrabarti S., Sima A.A.F. Increased renal aldose reductase activity, immunoreactivity, and mRNA in streptozotocin-induced diabetic rats. Diabetes 1989, 38: 1067–1071.

    Google Scholar 

  241. McClain D.A., Crook E.D. Hexosamines and insulin resistance. Diabetes 1996, 45: 1003–1009.

    CAS  PubMed  Google Scholar 

  242. Kolm-Litty V., Sauer U., Nerlich A., Lehmann R., Schleicher E.D. High glucose-induced transforming growth factor-β1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells. J. Clin. Invest. 1998, 101: 160–169.

    CAS  PubMed Central  PubMed  Google Scholar 

  243. Hebert L.J., Daniels M.C., Zhou J., Crook E.D., Turner R.L., Simmons S.T., Neidigh J.L., Zhu J.S., Baron A.D., McClain D.A. Overexpression of glutamine-fructose-6-phosphate amidotransferase in transgenic mice leads to insulin resistance. J. Clin. Invest. 1996, 98: 930–936.

    CAS  PubMed Central  PubMed  Google Scholar 

  244. Kolm-Litty V., Tippmer S., Haring H.U., Schleicher E. Glucosamine induces translocation of protein kinase C isoenzymes in mesangial cells. Exp. Clin. Endocrinol. Diabetes 1998, 106: 377–383.

    CAS  PubMed  Google Scholar 

  245. Filippis A., Clark S., Proietto J. Increased flux through the hexosamine biosynthesis pathway inhibits glucose transport acutely by activation of protein kinase C. Biochem. J. 1997, 324: 981–985.

    CAS  PubMed Central  PubMed  Google Scholar 

  246. Roos M.D., Han I.O., Paterson A.J., Kudlow J.E. Role of glucosamine synthesis in the stimulation of TGF-a gene transcription by glucose and EGF. Am. J. Physiol. 1996, 270: C803–C811.

    CAS  PubMed  Google Scholar 

  247. Koya D., King G.L. Protein kinase C activation and the development of diabetic complications. Diabetes 1998, 47: 859–866.

    CAS  PubMed  Google Scholar 

  248. Brawn M.K., Chiou W.J., Leach K.L. Oxidant-induced activation of protein kinase C in UC11MG cells. Free Radic. Res. 1995, 22: 23–37.

    CAS  PubMed  Google Scholar 

  249. Kaul N., Gopalakrishna R., Gundimeda U., Choi J., Forman H.J. Role of protein kinase C in basal and hydrogen peroxide-stimulated NF-kappa B activation in the murine macrophage J774A.1 cell line. Arch. Biochem. Biophys. 1998, 350: 79–86.

    CAS  PubMed  Google Scholar 

  250. Vlassara H. Protein glycation in the kidney: role in Diabetes and aging. Kidney Int. 1996, 49: 1785–1804.

    Google Scholar 

  251. Craven P.A., DeRubertis F.R. Protein kinase C is activated in glomeruli from streptozotocin diabetic rats: possible mediation by glucose. J. Clin. Invest. 1989, 83: 1667–1675.

    CAS  PubMed Central  PubMed  Google Scholar 

  252. Craven P.A., Davidson C.M., DeRubertis F.R. Increase in diacylglycerol mass in isolated glomeruli by glucose from de novo synthesis of glycerolipids. Diabetes 1990, 39: 667–674.

    CAS  PubMed  Google Scholar 

  253. Ayo S.H., Radnik R.A., Garoni J.A., Troyer D.A., Kreisberg J.I. High glucose increases diacylglycerol mass and activates protein kinase C in mesangial cell cultures. Am. J. Physiol. 1991, 261: F571–577.

    CAS  PubMed  Google Scholar 

  254. Haneda M., Araki S., Togawa M., Sugimoto T., Isono M., Kikkawa R. Mitogen-activated protein kinase cascade is activated in glomeruli of diabetic rats and glomerular mesangial cells cultured under high glucose conditions. Diabetes 1997, 46: 847–853.

    CAS  PubMed  Google Scholar 

  255. Fumo P., Kuncio G.S., Ziyadeh F.N. PKC and high glucose stimulate collagen a1(IV) transcriptional activity in a reporter mesangial cell line. Am. J. Physiol. 1994, 267: F632–F638.

    CAS  PubMed  Google Scholar 

  256. Studer R.K., Craven P.A., DeRubertis F.R. Role for protein kinase C in the mediation of increased fibronectin accumulation by mesangial cells grown in high glucose medium. Diabetes 1993, 42: 118–126.

    CAS  PubMed  Google Scholar 

  257. Koya D., Jirousek M.R., Lin Y.W., Ishii H., Kuboki K., King G.L. Characterization of protein kinase C beta isoform activation on the gene expression of transforming growth factor-beta, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats. J. Clin. Invest. 1997, 100: 115–126.

    CAS  PubMed Central  PubMed  Google Scholar 

  258. Ishii H., Jirousek M.R., Koya D., Takagi C., Xia P., Clermont A., Bursell S.-E., Kern T.S., Ballas L.M., Heath W.F., Stramm L.E., Feener E.P., King G.L. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC β inhibitor. Science 1996, 272: 728–731.

    CAS  PubMed  Google Scholar 

  259. Brownlee M., Cerami A., Vlassara H. Advanced glycation end-products in tissue and the biochemical bases of diabetic complications. N. Engl. J. Med. 1988, 318: 1315–1318.

    CAS  PubMed  Google Scholar 

  260. Mullarkey C.J., Edelstein D., Brownlee M. Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem. Biophys. Res. Commun. 1990, 173: 932–9.

    CAS  PubMed  Google Scholar 

  261. Vlassara H., Bucala R., Striker L.J. Pathogenic effects of advanced glycosylation: biochemical, biological, and clinical implications for Diabetes and aging. Lab. Invest. 1994, 70: 138–151.

    CAS  PubMed  Google Scholar 

  262. Miyata S., Monnier V. Immunohistochemical detection of advanced glycosylation end products in diabetic tissues using monoclonal antibody to pyrraline. J. Clin. Invest. 1992, 89: 1102–1112.

    CAS  PubMed Central  PubMed  Google Scholar 

  263. Makita Z., Vlassara H., Cerami A., Bucala R. Immunochemical detection of advanced glycosylation endproducts in vivo. J. Biol. Chem. 1992, 267: 5133–5138.

    CAS  PubMed  Google Scholar 

  264. He C.-J., Stitt A., Striker L.J., Hattori M., Vlassara H. Low expression of AGE-receptor-1 in NOD mouse mesangial cells: possible link to diabetic nephropathy. J. Am. Soc. Nephrol. 1996, 7: 1871A.

    Google Scholar 

  265. Leto G., Pricci F., Romeo G., Catalano S., Amadio L., Diaz-Horta O., Sale P., Gradini R., Lenti L., Barsotti P., Frigeri L., Di Mario U., Pugliese G. Induction of glomerular/mesangial galectin-3/AGEreceptor-3 expression by the diabetic milieu. Diabetologia 1998, 41 (Suppl. 1): A27.

    Google Scholar 

  266. Vlassara H., Striker L.J., Teichberg S., Fuh H., Li Y.M., Steffes M.W. Advanced glycation endproducts induce glomerular sclerosis and albuminuria in normal rats. Proc. Natl. Acad. Sci. USA 1994, 91: 11704–11708.

    CAS  PubMed Central  PubMed  Google Scholar 

  267. Yang C.-W., Vlassara H., Peten E.P., He C.-J., Striker G.E., Striker L.J. Advanced glycation endproducts up-regulate gene expression found in diabetic glomerular disease. Proc. Natl. Acad. Sci. USA 1994, 91: 9436–9440.

    CAS  PubMed Central  PubMed  Google Scholar 

  268. Skolnik E., Yang Z., Makita Z., Radoff S., Kirstein M., Vlassara H. Human and rat mesangial cell receptors for glucosemodified proteins: potential role in kidney tissue remodelling and diabetic nephropathy. J. Exp. Med. 1991, 174: 931–939.

    CAS  PubMed  Google Scholar 

  269. Crowley S.T., Brownlee M., Edelstein D., Satriano J.A., Mori T., Singhal P.C., Schlondorff D.O. Effects of nonenzymatic glycosylation of mesangial matrix on proliferation of mesangial cells. Diabetes 1991, 40: 540–547.

    CAS  PubMed  Google Scholar 

  270. Pugliese G., Pricci F., Romeo G., Menè P., Pugliese F., Giannini S., Cresci B., Galli G., Rotella C.M., Vlassara H., Di Mario U. Up-regulation of mesangial growth factor and extracellular matrix synthesis by advanced glycation endproducts (AGEs) via a receptor-mediated mechanism. Diabetes 1997, 46: 1881–1887.

    CAS  PubMed  Google Scholar 

  271. Lu M., Kuroki M., Amano S., Tolentino M., Keough K., Kim I., Bucala R., Adamis A.P. Advanced glycation end products increase retinal vascular endothelial growth factor expression. J. Clin. Invest. 1998, 101: 1219–1224.

    CAS  PubMed Central  PubMed  Google Scholar 

  272. Vlassara H., Brownlee M., Manogue K.R., Dinarello C.A., Pasagian A. Catechin/TNF and IL-1 induced by glucose-modified proteins: role in normal tissue remodeling. Science 1988, 240: 1546–1548.

    CAS  PubMed  Google Scholar 

  273. Kirstein M., Brett J., Radoff S., Ogawa S., Vlassara H. Advanced protein glycosylation induces transendothelial human monocyte chemotaxis and secretion of platelet-derived growth factor: role in vascular disease of Diabetes and aging. Proc. Natl. Acad. Sci. USA 1990, 87: 9010–9014.

    CAS  PubMed Central  PubMed  Google Scholar 

  274. Kirstein M., Aston C., Hints R., Vlassara H. Receptor-specific induction of insulin-like growth factor I in human monocytes by advanced glycosylation end product-modified proteins. J. Clin. Invest. 1992, 90: 439–446.

    CAS  PubMed Central  PubMed  Google Scholar 

  275. Bucala R., Tracey K.J., Cerami A. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilation in experimental diabetes. J. Clin. Invest. 1991, 87: 432–438.

    CAS  PubMed Central  PubMed  Google Scholar 

  276. Bierhaus A., Chevion S., Chevion M., Hofmann M., Quehenberger P., Illmer T., Luther T., Berentshtein E., Tritschler H., Muller M., Wahl P., Ziegler R., Nawroth P.P. Advanced glycation end product-induced activation of NF-kappaB is suppressed by alpha-lipoic acid in cultured endothelial cells. Diabetes 1997, 46: 1481–1490.

    CAS  PubMed  Google Scholar 

  277. Schmidt A.M., Hori O., Chan J.X., Li J.F., Crandall J., Zhang J., Cao R., Yan S.D., Brett J., Stern D. Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. J. Clin. Invest. 1995, 96: 1395–1403.

    CAS  PubMed Central  PubMed  Google Scholar 

  278. Esposito C., Gerlach H., Brett J., Stern D., Vlassara H. Endothelial receptor-mediated binding of glucosemodified albumin is associated with increased monolayer permeability and modulation of cell surface coagulant properties. J. Exp. Med. 1989, 170: 1387–1407.

    CAS  PubMed  Google Scholar 

  279. Lander H.M., Tauras J.M., Ogiste J.S., Hori O., Moss R.A., Schmidt A.M. Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J. Biol. Chem. 1997, 272: 17810–17814.

    CAS  PubMed  Google Scholar 

  280. Simm A., Munch G., Seif F., Schenk O., Heifland A., Richter H., Vamvakas S., Schinzel R. AGEs stimulated MAPK and its down stream target, the AP-1 complex, in tubulus cell line LLC-PK1. FEBS Lett. 1997, 410: 481–484.

    CAS  PubMed  Google Scholar 

  281. Soulis-Liparota T., Cooper M., Papazoglou D., Clarke B., Jerums G. Retardation by aminoguanidine of development of albuminuria, mesangial expansion, and tissue fluorescence in streptozotocin-induced diabetic rat. Diabetes 1991, 40: 1328–1334.

    CAS  PubMed  Google Scholar 

  282. Edelstein D., Brownlee M. Mechanistic studies of advanced glycosylation end product inhibition by aminoguanidine. Diabetes 1992, 41: 26–29.

    CAS  PubMed  Google Scholar 

  283. Nakamura S., Makita Z., Ishikawa S., Yasumura K., Fuji W., Yanagisawa K., Kawata T., Koike T. Progression of nephropathy in spontaneous diabetic rats is prevented by OBP-9195, a novel inhibitor of advanced glycation. Diabetes 1997, 46: 895–899.

    CAS  PubMed  Google Scholar 

  284. Youssef S., Nguyen D.T., Soulis T., Panagiotopoulos S., Jerums G., Cooper M.E. Effect of aminoguanidine therapy on renal advanced glycation end-product binding. Kidney Int. 1999, 55: 907–916.

    CAS  PubMed  Google Scholar 

  285. Cohen M.P., Ziyadeh F.N. Role of Amadori-modified nonenzymatically glycated serum proteins in the pathogenesis of diabetic nephropathy. J. Am. Soc. Nephrol. 1996, 7: 183–190.

    CAS  PubMed  Google Scholar 

  286. Ziyadeh F.N., Han D.C., Cohen J.A., Guo J., Cohen M.P. Glycated albumin stimulates fibronectin gene expression in glomerular mesangial cell: involvement of the transforming growth factor-beta system. Kidney Int. 1998, 53: 631–638.

    CAS  PubMed  Google Scholar 

  287. Cohen M.P., Sharma K., Jin Y., Hud E., Wu V.-Y., Tomaszewski J., Ziyadeh F.N. Prevention of diabetic nephropathy in db/db mice with glycated albumin antagonists. A novel treatment strategy. J. Clin. Invest. 1995, 95: 2338–2345.

    CAS  PubMed Central  PubMed  Google Scholar 

  288. Baynes J.W. Role of oxidative stress in development of complications in diabetes. Diabetes 1991, 40: 405–412.

    CAS  PubMed  Google Scholar 

  289. Lee A.Y., Chung S.S. Contributions of polyol pathway to oxidative stress in diabetic cataract. FASEB J. 1999, 13: 23–30.

    CAS  PubMed  Google Scholar 

  290. Williamson J.R., Chang K., Frangos M., Hasan K.S., Ido Y., Kawamura T., Nyengaard J.R., Van Den Enden M., Kilo C., Tilton R.G. Hyperglycemic pseudohypoxia and diabetic complications. Diabetes 1993, 42: 801–813.

    CAS  PubMed  Google Scholar 

  291. Yan S.D., Schmidt A.M., Anderson G.M., Zhang J., Brett J., Zou Y.S., Pinsky D., Stern D. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J. Biol. Chem. 1994, 269: 9889–9897.

    CAS  PubMed  Google Scholar 

  292. Giugliano D., Ceriello A., Paolisso G. Oxidative stress and diabetic vascular complications. Diabetes Care 1996, 19: 257–267.

    CAS  Google Scholar 

  293. Kashiwagi A., Asahina T., Nishio Y., Ikebuchi M., Tanaka Y., Kikkawa R., Shigeta Y. Glycation, oxidative stress, and scavenger activity: glucose metabolism and radical scavenger dysfunction in endothelial cells. Diabetes 1996, 45 (Suppl. 3): S84–S86.

    CAS  PubMed  Google Scholar 

  294. Tilton R.G., Baier L.D., Harlow J., Smith S., Ostrow E., Williamson J.R. Diabetes-induced glomerular dysfunction: links to a more reduced cytosolic ratio of NADH/NAD+. Kidney Int. 1992, 41: 778–788.

    CAS  PubMed  Google Scholar 

  295. Ha H., Yoon S.J., Kim K.H. High glucose can induce lipid peroxidation in the isolated rat glomeruli. Kidney Int. 1994, 46: 1620–1626.

    CAS  PubMed  Google Scholar 

  296. Reddi A.S., Bollineni J.S. Renal cortical expression of mRNAs for antioxidant enzymes in normal and diabetic rats. Biochem. Biophys. Res. Commun. 1997, 235: 598–601.

    CAS  PubMed  Google Scholar 

  297. Bierhaus A., Hofmann M.A., Ziegler R., Nawroth P.P. AGEs and their interaction with AGE-receptors in vascular disease and Diabetes mellitus. I. The AGE concept. Cardiovasc. Res. 1998, 37: 586–600.

    CAS  PubMed  Google Scholar 

  298. Koya D., Haneda M., Kikkawa R., King G.L. D-alpha tocopherol treatment prevents glomerular dysfunctions in diabetic rats through inhibition of protein kinase C-diacylglycerol pathway. Biofactors 1998, 7: 69–76.

    CAS  PubMed  Google Scholar 

  299. Tada H., Ishii H., Isogai S. Protective effect of D-alpha tocopherol on the function of human mesangial cells exposed to high glucose concentrations. Metabolism 1997, 46: 779–784.

    CAS  PubMed  Google Scholar 

  300. Shan Z., Tan D., Satriano J., Silbiger S., Schlondorff D. Intracellular glutathione influences collagen generation by mesangial cells. Kidney Int. 1994, 46: 388–395.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Pugliese M.D., Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pugliese, G., Pricci, F., Romeo, G. et al. Autocrine and paracrine mechanisms in the early stages of diabetic nephropathy. J Endocrinol Invest 22, 708–735 (1999). https://doi.org/10.1007/BF03343635

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03343635

Key-words

Navigation